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ABSTRACT OF THE DISSERTATION

The Shrinkage Least Absolute Deviation Estimator in Large Samples 

and Its Application to the Treynor-Black Model

by

Tae-Hwan Kim 

Doctor of Philosophy in Economics 

University of California, San Diego, 1998 

Professor Halbert White, Chair

The dissertation explores the extension of the James-Stein estimator in a direction that 

enables it to preserve its superiority when the sample size goes to infinity. The first 

chapter develops the theoretical foundation for the extension. Instead of shrinking a base 

estimator towards a fixed point, we shrink towards a data-dependent point, which makes 

it possible that the prior becomes more accurate as the sample size grows. We prove that 

the extended James-Stein estimator shrunk towards a data-dependent point has smaller 

asymptotic risk than the base estimator. It turns out that shrinking an estimator toward a 

data-dependent point is equivalent to combining two random variables using the James- 

Stein rule. We propose a general combination scheme which includes random 

combination and non-random combination as special cases. The result allows us to apply 

the extended James-Stein estimator to robust regression, especially to the Least Absolute 

Deviations Estimator. We show analytically and by simulation that if we shrink the LAD 

Estimator, then we have smaller risk.

The second chapter provides a way to obtain the sampling distributions and confidence 

intervals for the James-Stein type combination estimator using a bootstrapping method.

It is well known that in order to get a better bootstrap confidence interval, one should use

xii
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pivotal or asymptotically pivotal statistics. We use Ullah (1990)’s results to derive the 

first moment and the second moment. We use a consistent estimator for this asymptotic 

variance to obtain the bootstrapping pivotal statistics.

The third applies shrinkage estimation to the construction of optimal portfolios as 

proposed by Treynor and Black (1973) using alpha and beta forecast data from a financial 

institution. The Treynor Black model provides a method to exploit security analysis; 

however, its success depends critically on both the predictive ability of abnormal return 

forecasts and the conversion of this predictive power into the portfolio construction. We 

use the OLS estimator, the LAD estimator and shrinkage LAD estimators to extract 

predictive ability from raw alpha forecasts. The estimated correlation between ex-post 

abnormal returns and alpha forecasts is as low as 0.04, yet out-of-sample experiments 

show that the use of robust estimators can yield superior portfolios for the forecast 

database.

xiii
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Chapter 1

The James-Stein Estimator in Large Sample and its Application to 

Robust Regression: LAD Estimation

1
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2

1.1 Introduction

Shrinkage techniques for linear regression model have been studied extensively since 

the seminal works by Stein (1955), James and Stein (1960) and Hoerl and Kennard 

(1970). Stein (1955) and James and Stein (1960) prove that the usual estimator for the 

mean of multivariate normal distribution is inadmissible1 and there exists an improved 

estimator with smaller risk when the dimension of the multivariate normal vector is 

greater than two. On the other hand Hoerl and Kennard (1970) show that there exists a 

ridge parameter value such that the risk of the ridge estimator is smaller than the usual 

estimator. These two areas developed independently have a common basic idea to shrink 

the usual estimator to reduce its variance making the estimator biased.

Even though there are many papers in these areas, most of them have focused on the 

improvement over the Ordinary Least Squares Estimator (OLS) and little attention has 

been paid to the application to robust estimations. Askin and Montgomery (1980) apply 

shrinkage techniques such as ridge, Stein shrinkage and principal components to M- 

estimation to stabilize the estimator and residuals in the presence of multicollinearity and 

non-normality. In a series of papers, Saleh and Sen (1985, 1987) apply two shrinkage 

techniques to the M-estimator: a preliminary test shrinkage version and a special type of 

Stein shrinkage version. They show analytically that the classical M-estimator, the 

preliminary test shrinkage version of the M-estimator, and the Stein shrinkage version of 

the M-estimator are all asymptotically risk-equivalent in that their finite sample risks are 

converging to the same limit when the number of observations converges to infinity. 

Schmoyer and Arnold (1989) show that the shrinkage M-estimator asymptotically 

dominates the M-estimator as long as a special non-random guess sequence about the true 

parameters is available.

1 Suppose we have two estimators for the parameter 0 e  0 . Let RTj(0) be the ith estimator’s risk. Then Ti is 
defined to be "better than" T2 if and only if (1) RTi(0) <Rt2(0) for all 0 in 0  and (2) Rti(0) < R-n(Q) for at 
least one 0 in 0. An estimator T is defined to be admissible if and only if there is no better estimator.

I
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W e generalize the approach taken by Schmoyer and Arnold (1989) one step further. 

The key point in their approach is that they control the convergence rate of the shrinkage 

estimator by using a non-random guess sequence so that they can apply the James-Stein 

rule in the limit. However there is a strong assumption imposed on the non-random guess 

sequence, which makes this result difficult to apply in practice. We relax this assumption 

by shrinking a base estimator toward a data-dependent point (random guess). We show 

that the James-Stein type estimator shrunk toward a  data-dependent point has a smaller 

asymptotic risk than the base estimator. Interestingly it turns out that using a random 

guess is basically equivalent to combining two estimators by using the Stein random 

combination weight. Most studies have been focused on either non-random combination 

weight or random combination weight. See Arthanar and Dodge (1981), Cohen (1976) 

and Green and Strawderman (1991), Laplace (1818) and Cahn (1994). Accordingly we 

propose the Optimal Weighting Scheme (OWS) estimator which includes both random 

and non-random combination as special cases.

1.2 Asymptotic Risk Improvement

Consider yt = xt P° + et t = 1, 2 , . . . ,  n where P° e  Rk and et is assumed to be identical 

and independent. We define Xn = [xi, X2 , . . ., x„]’. Let b„ be an estimator for P°. A 

function L(b„,P°) is called the loss function if and only if (1) L(bn,P°) > 0 for all b„ and all 

P° and (2) L(bn,P°) = 0 if and only if b„ = P°. The expectation of the loss function 

E(L(bn,p0)) is called the risk denoted by R(bn,P°). An example of a loss function is the 

quadratic loss, L(bn,P°) = (bn-p0)'Qn(b-p0) where Qn is a symmetric and positive definite 

matrix. Let {bn} be a sequence of estimators of P°and let {L(b„,p0)} be a sequence of loss 

values. Suppose L(bn,P°) converges to an integrable random variable 'F in distribution. 

The asymptotic risk of {b„} for {L(b„,P°)} is then defined by 

AR({b„},p°) = E(n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Schmoyer and Arnold (1989) introduce a sequence of non-random guesses, {g„},

So far we have considered only a quadratic loss function. Let us define a general loss 

function, L(bn,p°) = h(nl/2(bn-P°), n 'Q n) where Q„ is a known matrix. The quadratic loss 

function is a special case where h(n,/2(bn-P°), n !Qn ) = nl/2(bn-P0)'n'1Qnn1/2(bn-P0). By 

assuming that (1) nl/2(gn-P°) -»  0 where 0 is a finite fixed vector (2) n ’Qn — — > Q 

where Q is a  nonstochastic symmetric and positive definite matrix and (3) h(a,b) = 

h(n1/2a, n_1b), Schmoyer and Arnold (1989) have proved that

provided that AR({8(bn,gn)hP°) < 00 and AR({bn},P°) < <*>. This result is interesting in 

the following senses. Firstly, The limiting random variable of the shrinkage estimator is 

not the usual normal random variable but a non-linear function of the normal random

2 Note that 5(b„,gn) = (1 - w(k,L))( bn-gn) + gn where w(k,L) = (k-2)/ L(bn, g„). The positive James-Stein 
shrinkage estimator is defined as Sfbn.g,,) = (1 - w(k,L))+(b„-gi,) + gn which is the proper convex 
combination of the estimator and the guess. The weight is increasing with k and decreasing with L. Since L 
is a weighted distance between the estimator and the guess, we have the following interpretation of this kind 
of shrinkage estimator. If the distance between the estimator and the guess is big, then this shrinkage 
scheme gives large weight to the estimator and small weight to the guess. If the distance is small, the other 
story is true.

where g„ is our guess about the true parameter, p°. A general version of the James-Stein 

shrinkage estimator, 8(bn,gn), is then defined by

5(b„,g„) = n '1/2K(U„, n'*Qn) + g„ 

where Un = n1/2(b„-gn) and Q„ is a known matrix. For example, if

K(Un,n'1Q„)= 1

/
( k - 2 )

then 5(bn,gn) = 1 -
( b n  — g n ) ' Q n ( b n  —  g n )  J

(bn - gn) + gn which is the usual JS estimator
v

for g„ = 0.2

(1) n,/2(8(b„,g„)-P°) - * - »  K(U,Q)+0 where n1/2(b„-g„) U

(2) AR({8(b„,gn)},P°) = E{L(K(U,Q), -0)}

(3) AR({8(b„,g„)},p°) < AR({b„},p°) if X e (0 ,2(k-2))
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variable. Secondly, we can achieve risk improvement even when the sample size 

approaches infinity.

It is well known that when g„ = 0 for all n, then AR({8(bn,gn)},P°) is same as 

AR({bnLS},p°); we have no improvement in large sample. The condition that nl/2(gn-P°) 

—» 0 plays the key role in obtaining the asymptotic risk improvement. However, the 

guess process is not random and must converge to the unknown truth (J° with the rate 0(n" 

1/2). In other words, we have to have a very good idea about the DGP without looking at 

the data generated from the Data Generating Process (DGP). This assumption is not 

practical and it needs to be relaxed.

Accordingly we consider two alternatives to Schmoyer and Arnold. One is a changing 

parameter, non-random guess approach. The other is a fixed parameter, random guess 

approach. We consider the changing parameter, non-random guess approach first. 

Suppose we observe y„t which is generated by ym = Xntpn° + £« where the true parameter 

process {P„°}, though changing with n, converges to a limit P° as n converges to infinity. 

Here n is the size of the sample and t is the index of an observation. In this case the truth 

depends on the size of the sample we draw from the population. This model is relevant if 

the population distribution depends on the sampling. We state some assumptions.

Assumption 2-1 n ,/2(b„-pn0) —— » N(0,A) where A is a nonstochastic, symmetric and 

positive definite matrix.

Assumption 2-2 nl/2(g*-Pn°) —> 0 where 0 is a fixed vector.

Assumption 2-3 n'*Qn — — > Q where Q is a nonstochastic symmetric and positive 

definite matrix.

Corollary 2-1 Asymptotic Risk with changing parameter and non-random guess

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Suppose that Assumption 2-1, 2-2 and 2-3 hold. We define a loss function L(bn,Pn°) = 

h(n1/2(bn-P„°), n_1Qn) where h is continuous in both arguments and it satisfies h((bn-Pn0), 

Q„) = h(n1/2(bn-Pn°), n'*Qn). The extended James-Stein type estimator is defined by 

8(b„,g*) = n 1/2K(U„, n 'lQn) + g* where Un = n l/2(b„-g*) and K is continuous in both 

arguments. Then

(1) U„ U ~ N(-0,A).

(2) nI/2(8(bn,g*)-P„°) —^  K(U,Q)+9.

(3) L(8(bn,g*),pn°) L(K(U,Q), -0).

(4) AR({8(bn,g*)},Pn°) = E{L(K(U,Q), -0)} provided the expectation exists.

Proof: The proof is straightforward and omitted.

The other alternative is to randomize the guess process so that it depends on the data. 

A necessary condition for this random guess is 

n,/2(g„-p°) N(0,B)

where B is a  nonstochastic matrix. However it turns out that this assumption is not 

sufficient because even though the limiting marginal distributions of n1/2(g„-P°) and 

n1/2(bn-Pn°) may be normal, the joint distribution could be another distribution. In order 

to avoid this problem we impose a joint normality condition.

Assumption 2-4 Joint Normality Condition

'n U2(bn 1 "C
o O 1

* 5 'Ux~ ~ N
r 1

o *■ X
i

A f c x i  ^ k x k
\

y ,2u „ 1
✓—“N
o1

. U 2 . \ P k Y .  1 .

9
k x k  ^ k x k  . 7

where 0, A, B, and A are

bounded..

Theorem 2-2 Asymptotic Risk with fixed parameter and changing guess

Suppose that Assumption 2-3 and 2-4 hold. We define a loss function L(bn,P°) =

h(n1/2(bn-P°), n^Qn) where h is continuous in both arguments and it satisfies h((bn-pn0),
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Qn) = h(n1/2(b„-pn°), n ''Q n). The extended James-Stein type estimator is defined by 

8(bn,gn) = n‘1/2K(Un, n 'lQ„) + gn where Un = n1/2(bn-g*) and K is continuous in both 

arguments. Then

(1) U„ — » U = U, - U2.

(2) n l/2(5(b„,gn)-p°) —*-» K(U,Q)+U2.

(3) L(8(bn,g„),p°) - * - *  L(K(U,Q),-U2).

(4) AR({8(b„,g„)},P°) = E{L(K(U,Q), -U2)} provided the expectation exists.

Proof: See Appendix.

This result shows that we obtain the basically same formula using the random guess. 

This result is interesting in the following senses. First, it provides us with a way of 

choosing a finite sample random guess. It allows us to choose another estimator as our 

guess since many econometric estimators satisfy the asymptotic normality condition. For 

example, if we want a shrinkage transformation of the OLS estimator, one option is to 

shrink the OLS estimator towards the LAD estimator instead of zero if the LAD estimator 

satisfies the joint distribution assumption.3 Secondly, this random guess approach 

provides us with a way of combining two estimators. In fact if we use another estimator 

as our guess, then the shrinkage transformation is equivalent to using a convex 

combination of those two estimators which we call the James-Stien Combination (JSC) 

Estimator. In the following we prove that we are still able to make an improvement on 

the base estimator even though we use the random guess.

Assumption 2-5 Prob[bn *  gn] = 1 for all n.

Assumption 2-6 Prob[Ut ^  U2] = 1.

3 One can show that the LAD estimator and the OLS estimator are converging to a joint normal distribution 
under some regularity condition using the Bahadur representation (She, P. (1992), Bates and White (1993)).
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Definition 2-1 James-Stein Combination Estimator

The combination of two estimators using the James-Stein rule,

8 /s(bn,g„) = 1 -
( b n  — g n ) ' Q n ( b n  — g n )  >

(bn - g„) +  gn

where X is a constant, is called the James-Stein Combination (JSC) Estimator4.

Corollary 2-3 Suppose that Assumption 2-3,2-4,2-5 and 2-6 hold. Define

(1) n ,/2(SxJS(bn,g„)-P°) —^  8,js(U,,U2).

(2) AR( {8xJS(bn,gn)} ,P°) = R(8XJS(U i ,U2),0) provided the expectation exists. 

Proof: The proof is straightforward and omitted.

Theorem 2-4 Suppose that Assumption 2-3, 2-4,2-5 and 2-6 hold. Then

(1) AR({8,JS(bn,gn)},P°) is strictly convex in X.

(2) Let X* e  argmin AR( {8xJS(bn,gn) } ,P°). Then X* = v/cd where

(3) AR({8x*JS(b„,gn) },P°) = -v2/© + K where K = AR({b„},P°) = e [ u x'QUx].

(4) AR({8,.JS(b„,gn) },p°) < AR({bn},P°) where the equality holds only when v = 0.

(5) AR({8,JS(bn,gn)},p0) ^  AR({bn},P°) if X e  [min{0,2v/©}, max{0,2v/co}] where 

the equality holds only when v = 0.

Proof: See Appendix.

As long as v  ^  0, which we call the ‘Relative Non-Efficiency Condition (RNEC)’ for the 

base estimator5, we can achieve an asymptotic risk improvement with respect to the base

4 Note that the JSC estimator is well-defined by Assumption 2-5.

v = E  ------- 1 1------------
(Ux- U 2)'Q(Ux- U 2)_

Uy'QWx-Ul) and © = E
1

(UX- U 2)'Q(UX- U 2) '
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whether E is negative or positive. It is interesting that the ratio

estimator by choosing the shrinkage factor X properly. One example where v = 0 is that 

the base estimator is asymptotically efficient. While the sign of © is positive by 

Assumption 2-6, the sign of v is not determined. Therefore the sign of X* depends on

C / , W i ~ £ / 2) "

L(C/,-E/2)’G (£ /,-£ /2)J

v/(Q is equal to k-2 when Ui and U2 are independent; i.e. A = 0. Therefore in this case, the 

optimal combination weight is exactly equal to the James-Stein optimal weight. The 

deviation of the ratio v/co from k-2 depends on the degree of the correlation between the 

base estimator and the guess estimator.

Example 2-1 Suppose that A = d l ,  B = t 2I, A = 0, Q = I and k  > 3. Then

(1) v = (k-2)o2©.

(2) X* = (k-2)®2.

(3) AR( {8x*JS(b„,g„)} ,P°) = -(k-2) V / cd + d k .

Example 2-2 Suppose that A = d l ,  B = x2I, A = 0, Q = I, 0 * 0 and k = 4. Then

(1) © =  l/ltt^  + x V e ] .

(2) AR({8,.JS(b„,gn)},P°) = - 4 d /[ ( d  + r ) 0 ’0] + 4a2.

Example 2-3 Suppose that A = a 2!, B = x2I, A = 0, Q = I, 0 = 0 and k > 3. Then

(1) co= l/[(k -2 )(c2 + T2)]

5 The relative non-efficiency condition does not allow us to choose any asymptotically efficient estimator as 
the base estimator (b„) unless we select a “super-efficient estimator” as our guess (g„) if we want to reduce 
asymptotic risk. If we know the error distribution is normal, the Maximum Likelihood Estimator (MLE) is 
asymptotically efficient and has the minimum asymptotic risk. There is no need to shrink the MLE to 
minimize the asymptotic risk. For an example of a “super-efficient estimator” and some discussion of 
asymptotic efficiency, see e.g. White (1994, pp 133). Suppose we choose an asymptotically efficient 
estimator as the base estimator. Then, any guess estimator, if not super-efficient, can be expressed as the 
sum of the asymptotically efficient estimator and a random noise, which converges to zero as n goes to 
infinity and is asymptotically uncorrelated with the asymptotically efficient estimator. Therefore, 
Cov(U|,U|-U2) = 0 which is equivalent to Ui being independent of U r U2. This implies that v = 0. The 
condition, v ^ 0 ,  also guarantees that Prob[U| = U2] < 1.
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(2) AR( {8x»JS(b„,g„)} ,p°) = kcrV/Co2 + x2) + 2 g 4/(ct2 + x2).

Example 2-4 Suppose that A = a 1!, B = x2I, A = 0, Q = I and k > 3. Then 

AR({8x.JS(b„,g„)},3°) < key2 - ( k ^ V / t O ’e+Ot^Ko2 + x2)].

While the JSC estimator is a combination of two estimators using a random weight, 

conventional combined estimators use non-random weight. This non-random 

combination has been studied mainly for independent estimators. See Cohen (1976) and 

Green and Strawderman (1991). Laplace (1818), Cahn (1994) consider combining 

correlated estimators, but they analyze the one dimensional case and obtain the optimal 

weight by minimizing (asymptotic) variance. We consider combining multi-dimensional 

correlated estimators by minimizing asymptotic risk. We define the Non-Random 

Combination (NRC) Estimator formally.

Definition 2-2 Non-random Combination Estimator

The combination of two estimators using a non-random weight,

8,NR(b„,g„) = (1-X)(bn - g„) + g„ 

where X is a constant, is called the Non-Random Combination (NRC) Estimator.

Corollary 2-5 Suppose that Assumption 2-3 and 2-4 hold. Then

(1) n1/2(8xNR(bn,gn)-P°) 8,nr(U,,U2).

(2) AR({SxNR(bn,gn)},p°) = R(8xnr(U i,U2),0) provided the expectation exists.

Proof: The proof is straightforward and omitted.

Corollary 2-6 Suppose that Assumption 2-3,2-4, 2-5 and 2-6 hold. Then

(1) AR( {8xNR(bn,gn)} ,P°) is strictly convex in X.

(2) Let X* e  argmin AR({8xNR(bn,gn)},P°). Then X* = p/oc where
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a  = E [(£/, -  U2 ) W ,  -  U2)] and p = e[c/, W ,  -  U2)].

(3) AR({8x.NR(bn,gn)},p°) = -p2/ a  + k w h erek  = AR({b„},p°) = E [ux'QUX\.

(4) AR({8x*NR(bn,g„)},p°) < AR({bn},P°) where the equality holds only when P = 0.

(5) AR({8xNR(b„,g„)},p°) < AR({b„},p°) if X e  [min{0,2p/a}, max{0,2p/a}] where 

the equality holds only when P = 0.

(6) AR({5x»NR(bn,gn)},P°) ^  AR({g„},P°) where the equality holds only when

y  = 0 with y  = E [{Ux -  U2) ’QU2 ].

Proof: See Appendix.

Therefore if both P * 0 and y * 0 ,  then the asymptotic risk of the NRC estimator is strictly 

smaller than both the base estimator and the guess estimator when the optimal weight is 

chosen.

Example 2-5 Suppose that A = a 2!, B = x2!, A = 0 and Q = I. Then

(1) a  = 6’0 + k(a2 + T2).

(2) p = k a2

(3) X* = k a ^ te ’e + k(<r + x2)].

(3) AR( {5x*NR(bn,gn)} ,p°) = k a 2 - k2a 4/[0’6 + k(a2 + x2)].

Example 2-6 Suppose that A = G1!, B = x2I, A = 0, Q = I and 0 = 0. Then

(1) X,* = a 2/(a2 + x2).

(3) AR({8x*NR(bn,g„)} ,P°) = ko2x2/(a2 + x2).

By comparing Example 2-3 and Example 2-6, we can conclude that AR({8x*NR(bn,gn)},P0) 

< AR( {8x»JS(bn,gn) } ,P°) when A = o^I, B = x1!, A = 0, Q = I and 0 = 0. The following 

example provides a condition under which AR({8x*NR(bn,gn) },P°) > AR({8x»,s(bn,gn)},P0).
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Example 2-7 Suppose that A = cr2!, B = i^I, A = 0, Q = I, k > 3 and 0 * 0 .  Then

AR({8x*NR(b„,gn) },P°) > AR({5x.JS(bn,gn)},P°) <=> co <
1

d’d+k(<r2 + r 2)

Example 2-8 Suppose that A = a 2!, B = x2I, A = 0, Q = I, k = 4 and 0 * 0 .  Then 

AR({8x*NR(bn,gn) },P°) > A R ({S /s(b„,g„)},P°) «=> 4(<r2+ r )  < Q’Q[4(c2+t2)-1].

We now propose a general combination scheme, which includes both the JSC estimator 

and the NRC estimator as special cases.

Assumption 2-7 (Ui-U2) ’Q(Ui-U2) is nondegenerate.6

Definition 2-3 Optimal Weighting Scheme Estimator 

The combination of two estimators defined by
t  1 \

8 ° w(bn,gn) = \ - X t—
X 2 (bn * gn) + gn' (bn - g ttyQn(bn - g n) )  

where X = [Xj AaV, is called the Optimal Weighting Scheme (OWS) Estimator.

Corollary 2-7  Suppose that Assumption 2-3,2-4, 2-5 and 2-6 hold. Then

(1) n,/2(8 °w(b„,gn)-P°) 8 ° w(U,,U2).

(2) AR({8xow(bn,gn) },p°) = R(8XOW(U|,U2),0) provided the expectation exists.

Proof: The proof is straightforward and omitted.

The following theorem provides the optimal combination weight for the OWS estimator 

and some conditions under which the asymptotic risk of the OWS estimator is smaller 

than the asymptotic risk of the base estimator.

6 A random variable X is called degenerate if there exists a constant c such that Prob[X=c] = l.
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Theorem 2-8 Suppose that Assumption 2-3,2-4, 2-5, 2-6 and 2-7 hold. Then

(1) AR( {5xow(b„,gn) } ,P°) is strictly convex in X.

(2) Let X* e  argmin AR({8xNR(bn,gn)},P°). Then 

X,i* = (aoo-iy^Pco-v) and X2* = (aco-l)'(av-p).

(3) AR( {8x*ow(bn,gn)} ,p°) = (ato-l)'2[-ap2tD2-(2apv-a2v2+p2)a)+(av2-2pv)] + k .

(4) AR({8x*ow(b„,gn) },P°) < AR({b„},P°) where the equality holds only when p = 0 

and v = 0.

Proof: See Appendix.

We call (Xi*, X2*) optimal weighting shrinkage factors and (a,p,v,CD) combination 

control parameters.

In the following we identify some properties of optimal weighting shrinkage factors and 

combination control parameters.

Corollary 2-9 Suppose that Assumption 2-3, 2-4,2-5,2-6 and 2-7 hold. Then

(1) atD-1 > 0 .

(4) Suppose that bn is asymptotically efficient and gn is consistent and not super- 

efficient. Then 

Xi* = 0 and X2* =0.

Proof: See Appendix.

1
(2) A,,*>0<=>Cov UyQ(Ux- U 2), (Ul - U 2yQ(Ul - U 2) \ - ° '

Xi* < 0 «=> Cov U, 'Q(Ul -  U2), (u]- u 2yQ(ui - u 2) \ >0-

(3) X2* > 0 <=> Cov ( U i - U ^ ’Q i U t - U

X2* < 0  <=> Cov (Ul - U 2yQ{Ul - U 2),         > 0.
(Ul - U 2YQ(Ul - U 2)_

U i ' Q W i - u  z)
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We now prove that the OWS estimator has no larger asymptotic risk than both the JSC 

estimator and the NRC estimator.

Corollary 2-10 Suppose that Assumption 2-3, 2-4, 2-5,2-6 and 2-7 hold. Then

(1) AR({8x*ow(b„,gn) },P°) < AR({8x*JS(b„,gn)},P°) where the strict inequality holds 

if A,|* is not equal to zero.

(2) AR({5^ow(b„,g„)},P°) < AR({5x.NR(bn,gn)},p°) where the strict inequality holds 

if Xi* is not equal to zero.

Proof: See Appendix.

Example 2-9  Suppose that A = a 1!, B = x2I, A = 0, Q = I, k > 3  and 0 = 0 .  Then

(1) h *  = a V o r  + x2).

(2) X2* = 0.

Example 2-9 is interesting in that it tells us that the NRC estimator is optimal and the JS 

random combination part does not make any contribution when A = a 2!, B = x2I, A = 0, Q 

= I, k > 3 and 0 = 0 ;  especially when there is no asymptotic bias7. The following 

example provides a condition under which the JS random part makes contribution to an 

asymptotic risk reduction.

Example 2-10 Suppose that A = crl, B = x2I, A = 0, Q = I, k = 4 and 0 * 0 .  Then

7 Since we are in particular interested in combining the OLS estimator and the LAD estimator in which case 
0 is most likely equal to zero, it is interesting to see whether is still equal to zero when A and B are 
general covariance matrices and A is non-zero. The necessary and sufficient condition is given in Corollary 
2-9 as

Cov(X,Y) = 0
where X = (U,-U2)’Q (U,-U2) and Y = U,’Q (U,-U2)/ (U,-U2)’Q (U,-U2). It is not easy to verify this 
condition analytically, but it is possible to estimate the covariance and test the null hypothesis that the 
covariance is equal to zero. According to the simulation study carried out in Appendix, there is some 
evidence that the covariance is close to zero, but not equal to zero. See Appendix for detailed discussion.
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x 2* = 0  <=> 0’0 = 4(o2+ t2)/[2(o2+ t2)- 1 ].

Even though the OWS estimator has some nice properties, the OWS estimator cannot be 

estimated directly because it contains 4 unknown parameters; a , P, v, to. We show how 

to estimate those parameters consistently in the following. We consider only the case 

where there is no asymptotic bias; 0 = 0. Before we proceed, we define some random 

variables used in the result. Define 

~U,
u  =

U , - U 2 J

Then U ~ N(02kxi, 2) where X =
A A - A  
A - A ’ A - A - A ’+B

. There exists a matrix, P such

that X = P P \ Let Z = P''U. T henZ ~ N (02kxi,l2kx2k). Define

M, = P ’N]P where N. = 1 / 2
0*x* Q 
Q okxk

and

M = P’NP where N  =
0 ^ 0kxk kxk

' k x k

It can be shown by some simple algebra that

(1) U ,’Q (U rU 2) = Z’M,Z.

(2) (U,-U2)’Q(U,-U2) = Z’MZ.

This transformation permits us to use Ullah (1990)’s results on moments of the ratio of
A A A

quadratic forms. Suppose that A,B , A are consistent estimators for A, B, A respectively. 

We consider the following estimators for the combination control parameters.

( 1 ) a

(2)/?

(3)ta

= t r [ ( A - A - A ’+B)Q].

= tr[ (A -A ')Q \.

M

= (r(l))~‘ JI N u I-1'2 dt where N u = I + 2t±22Q and t 22 = A -  A -  A ’+B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

16

oo

(4) V = (r(l))-1 J IN 0I I'1'2 tr[M {N 0l~l ]dt 
o

where (1) T(.) is the gamma function;

(2) N 0l = 1 + 2tM

Before we show the consistency of these estimators, we need to establish that the 

combination control parameters are not infinite.

Assumption 2-8 Z2 2 = A - A - A’ + B is positive definite.

Corollary 2-11 Suppose that Assumption 2-4 and 2-8 hold.

Then

(1) loti < oo.

(2) I |3l < oo.

(3) l(0 l<°oifk>2.

(4) lv l< o o i f k * 2  and k *  4.

Proof: See Appendix.

Now we prove that the estimators defined above converges to the combination control 

parameters in probability.

Corollary 2-12 Suppose that Assumption 2-3, 2-4, 2-5, 2-6, 2-7 and 2-8 hold. Suppose 

that k > 2 and k * 4 . Then

( 1) a n —

(2) £

(3) d>n — ^  co.

(4) v„ v .

Proof: See Appendix.
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In reality, we need to use the estimator ( A ) for the optimal weighting shrinkage factor 

(K*) and the estimated OWS estimator is given by

<5f OW(b„,gn) = f  f  i  '1-A,------------ (bn - gn) + gnCb „ - g nyQn(.bn - g n) )  

where \  = (aa> - 1)~'(0d) -  v) and A, = (a d > -l)~ '(a v -  f t ) .

An important question is whether we can still achieve the optimality (minimum 

asymptotic risk) when we use the estimated OWS estimator. The following corollary 

answers this question.

Corollary 2-13 Suppose that Assumption 2-3, 2-4, 2-5, 2-6, and 2-8 hold. Suppose that 

k > 2 a n d k ^ 4 .  Then

( 1) 4 „— p—± A,* and Aj„—^  Â .

(2) n 1/2(8,.ow(b„,g„), P°) 8x.ow(U,,U2).

(3) n 1/2(^- ow(b„,g„), p°) 5,.ow(U,,U2).

(4) A R({^. ow(bn,gn) }, p°) = AR({5x»ow(bn,gn) }, P°)

Proof: See Appendix.

The estimated OWS estimator has the same limiting distribution of the OWS estimator 

with true combination control parameters. Therefore, the asymptotic risk of the estimated 

OWS estimator achieve the minimum bound even though only estimators are used in 

place of the true combination control parameters.

1.3 Asymptotic Risk of the LAD estimator
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• 8In this section we will apply the results in the previous section to the LAD estimator . 

One necessary condition is the asymptotic normality of the LAD estimator. Many 

versions of asymptotic theories have been developed. We use Bloomfield and Steiger’s 

(1983) result because it allows the processes to be dependent. We first state their 

theorem. As usual we have y = X(5° + e where P° e Rk, y e  Rn.

Asymptotic Normality Theorem fo r  the LAD Estimator 

Suppose the following conditions hold.

A1. (yt, Xt) is stationary and ergodic and for finite P° 6 Rk, k e N, e, sy t-Xt'P0 is a 

Martingale Differences Sequence.

A2. X is independent of £.

A3. X ’X is positive definite almost surely for all n sufficiently large.

A3. Et has a continuous density, f( .) , at zero such that f(0) > 0.

8 An estimator, b e Rk is called the LAD estimator if  and only if 
b e  a r g m in £ ly, . Xl, p  ,

f»l
The main reason we are interested in the LAD estimator is that it is robust to the outliers in the dependent 
variable. However the LAD estimator is not robust to the outliers in independent variables. This can be 
explained intuitively by the fact that the finite sample breakdown point of a univariate sample median is 
50% and the LAD estimator is the conditional median estimator o f the dependent variable as a function of 
the independent variables. Intuitively speaking, the LAD estimator is not stable with respect to explanatory 
variables and therefore there could be room for stabilizing the estimator by using some shrinkage 
techniques. Outliers can be interpreted in many ways. One way is to view them as coming from the fat 
tailed distributions. Recently many data, especially financial data tend to exhibit very fat tailed distributions. 
In this case the OLS estimator is too vulnerable to be relied on. We need other estimators such as the LAD 
estimator.

Despite this advantage, little attention has been paid to the LAD estimators in the development of 
econometrics. There are two main reasons. One is die difficulty in obtaining the LAD estimator because the 
usual differentiation cannot be used. Chames et al. (1954) showed that the LAD estimator can be obtained 
by the simplex method linear programming. But this method was not efficient in that the parameter space 
grows along with the number of observations and as a result, it requires a long search time. Barrodale and 
Roberts (1974) proposed a modified version of simplex algorithm called Barrodale and Roberts L| 
Algorithm. This algorithm is much more efficient than the simplex method and greatly reduces the 
computation time. In the paper we use the Barrodale and Roberts L] Efficient Algorithm. The other reason 
is again computational burden in obtaining the standard error. In order to get the standard error, one should 
either estimate the density function of the dependent variable evaluated at zero or do the bootstrapping.
With the rapidly growing computer power, this is not a great problem either. In the appendix, we explain 
heuristically why minimizing mean absolute error gives the median estimator and discuss how to convert the 
minimization problem into a linear programming.
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A4. &t has a unique median

Let b1̂ 0 be the LAD estimator. Then

nl/2(b„^D-p°) —*-» N(0, (2f(0))-2Q-‘) 

where Q is the second moment matrix of X.

Based on the asymptotic normality results we have the following facts. We cover only 

the non-random guess case for simplicity, and all results can easily be extended to the 

random guess case.

Corollary 3-1 Asymptotic Risk o f the LAD Estimator 

Suppose we have the quadratic loss function9, L(bn,P°) = (bn-p0)’ Xn’Xn(bn-P°).

Under the relevant assumptions, ARCtbn1'*15} ^0) = (2f(0))'2k.

Proof: See Appendix.

Theorem 3-2 Asymptotic Risk o f the JSLAD Estimator 

Suppose we have the quadratic loss function, L(bn,P°) = (bn-p0)’ Xn’X"(bn-p°).

Define the JSLAD estimator, bJSLAD, as

bJSLAD = (ni/22 £ (0))-i K(Unj Qn) + gn

K(U-'Q“) = ( l - r o ) u"

Un = n1/22 f  (0)(bn- gn)
A

where f  (0) is a consistent estimator for f(0). Then

AR( {bnJSALD} ,P°) = (2f(0))'2 {k-X(2(k-2)-X)E ( k + 2 p , 2 ) }

9 Whenever we mention a loss function, we implicitly have the quadratic loss function in mind. But any
function which satisfies the definition of the loss function can be used and the choice o f a loss function
depends on the nature of the study or the convenience of calculation. In many cases the quadratic loss
function is easy to deal with. Although the LAD estimator minimizes the sum of the absolute value of the
errors, we consider only the quadratic loss function; this is mainly for its computational convenience.
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where P  ~ Poisson (d ’QB/2) and 2(2f(0))2(p°-g„)’Xn’Xn(P°-g„) —*-> 0’Q0/2.

Proof: See Appendix.

Finally we have the following fact showing the asymptotic inadmissibility of the LAD 

estimator.

Corollary 3-3 Asymptotic Inadmissibility o f the LAD Estimator 

Under the same assumption in Corollary 3-1 and Theorem 3-2,

AR( {b„JSLAD} ,p°) < AR({b„LAD},p°) if k >2.

1.4 The Existence of An Improved LAD Estimator

Schmoyer and Arnold also prove that for a robust estimator, bR, there exists a better 

estimator with strictly smaller risk in finite sample. In this section we apply their result to 

the LAD estimator. The improved robust estimator, 8(bR), is defined as

S(bR) = (I- (X’X )-‘)bR
a-t-llbalL

where a, b are some positive constants.

In order to apply their result to the LAD estimator, we need to show at least that the 

LAD estimator is translation equivariant and unbiased. An estimator, b, is called 

regression equivariant if and only if b({(yt+Xt’v, Xt) t = 1,2,. . .  n}) = b({(yt, Xt) t = 1,2,. 

. .  n}) + v where v is any column vector10.

Corollary 4-1 The LAD estimator is regression equivariant.
n

Proof: Letbi e  argmin^jlyt - Xt’Pl.
i=i

10 See pp 116 in Rousseeuw and Leroy (1987) for definition.
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n n

L etb2 € argmin 5 j ( y t + Xi’v) - Xt’pl = a rg m in ^ y ' - X»’(P -v ) l
t=i 1=1

Hence b2 -v = bi implying that b2 = bj + v. Q.E.D.

Next we need to check if the LAD estimator is unbiased or not. As mentioned earlier,

Taylor (1974) prove that under some conditions, the LAD estimator is unbiased. One of

condition is that the distribution of the error is symmetrical about zero. In addition to 

this, there are three more conditions. Andrews (1986) provide us with a general proof of 

unbiasedness of estimators including GLS, quasi-maximum likelihood, robust, adaptive, 

and spectral estimators. He shows that if an estimator is a solution of an optimization 

programming with some mild regularity conditions and the error is symmetric, then the 

estimator is unbiased. We use his result to show the unbiasedness of the LAD estimator.

Corollary 4-2 Unbiasedness o f the LAD Estimator11 

If the distribution of e is symmetrical, then E(bLAD) = p.

Now we are in the position to discuss the improved LAD estimator. Combing the 

properties shown above, we are able to obtain the Improved LAD estimator (ILAD).

Corollary 4-3 Improved LAD Estimator Existence 

A l. The distribution of £ is symmetrical.

A2. R(bLAD,p )< ~ .

A3. Var(y) <

A4. There exists £ > 0 such that tr(£) - 2% > e where £  = Covtfj1'*0) and £ = the largest 

eigenvalue of £.

A5. There exists N > 0 such that N > E(llbLAD-pil)4(Var(y))'2 .

11 In his proof, Taylor (1974) needed E(e) = 0. It can be shown that if E(e) is not equal to zero, then only 
intercept estimator is biased and the other slop estimators still remain unbiased. Hence if  this is the case, we 
can remove the intercept estimator using Frisch-Waugh-Lovell Theorem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

22

Then there exist positive constants a, b such that the estimator

5 ( 5 ^ ° )  =  (I -
a+llb^ll

Q - I ) t ) L A D

has strictly smaller risk than the LAD estimator for all P € Rk. We call this estimator
12Improved LAD Estimator (ILAD).

Proof: Proof is straightforward and omitted.

12 This ILADE has a finite sample property. We can also show the existence o f an asymptotically improved 
extimator which can be applied to the LAD estimator. Suppose we have the following assumptions.

(1) n1/2(b„-P°) — -—> NfO.O2A).

(2) n1/2(g„-p°) --------> 0. ({gn} is non-random guess sequence.)

Un where a, b are constants and

(3)n'Q„ — £—»Q-

(4)K(U„,n-'Qn)=  '
a + U„n- ' QnU j

Un = n1/2(b„ - p°) and Q„ = CT„'2(XnX").
(5) S(bn,gn) = n'l/2K(U„, n 'Qn ) + gn.

Then, for sufficiently small b and large a, AR({8(b„,g„)},p0) < AR({b„},p°).
Proof
Using the ART,

AR({5(bn,gn)},P°) = E{L(K(U,Q), -0)}

= E{[f! -------- 1,-----1 U+0]X2{[f! ------- L. } U+0]}
 ̂ a  + U Q U  J V a + U Q U  J

where U -  N(-0,Q'').
Since E(U) = - 0, we can utilize the technique used in James and Stein (1960) to get the following.

E{L(K(U,Q),-0)} < E{L(U,-0)}.
Therefore AR({8(bn,gn)},p°) < AR({b„},p°).
We call this estimator (applied to the LADE) Asymptotically Improved LADE (AILADE).
The finite sample formula for AILADE is 

5(b„,gn) =n-'/2K(U„,n1Qn) + g n

= n M ( j _ _________________ t _________________ 1 n'^bn-gn) + g„
t  a + n' ,2{b„ - g „ ) n - ' Q y \ b n -  g „) )

= ( l ______________ t -------------------1 (b„-g„) + g„.
 ̂ a + {bn — s.)(2,(fc„ - 8 . ) )

Advantages over the finite-sample Improved Estimator are as follows
(1) b„ is not necessarily translation equivariant.
(2) b„ could be biased. This may allow us to do an iterative estimation.

In other words, there is a possibility of using b„s as the guess of n+1 step 
iteration.

(3) The other technical assumptions such as A4 and AS are no longer 
needed.
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Even though the ELAD estimator looks like the usual JSLAD Estimator (JSLAD), there 

are several important differences. Since the ILAD estimator has a matrix shrinkage 

transformation, it shrinks each elements in the coefficient vector at a different rate. On 

the other hand, the JSLAD estimator has a single shrinkage rate for all coefficients. The 

improvement of the JSLAD estimator is guaranteed only asymptotically, but the 

improvement of the ILAD estimator can be obtained in the small sample whenever we 

have the right values of the two dimensional ridge parameters. The difficulty in choosing 

the parameters is essentially same as what we have when we are dealing with the Ridge 

estimator. That is why we call these parameters ridge parameters. An analysis of how to 

choose the right values of the ridge parameters is beyond the scope of this chapter. We 

conjecture that cross validation method may help in finding the right ridge values.

1.5 Simulation

In previous section, we have shown that the asymptotic risk of the JSLAD estimator is 

strictly less than the asymptotic risk of the LAD estimator. In this section, we discuss a 

Monte Carlo simulation designed to investigate the small sample properties of the 

shrinkage LAD estimators. We compare the approximated risks of all combination 

estimators developed in previous sections as well as the corresponding positive 

combination estimators where the weight is constrained to be positive. In the simulation, 

we specifically choose the LAD estimator and the OLS estimator to combine.

The basic model for the simulation is yt = xt’P° + et where t = 1, 2, ... , n, p° € Rk, n = 

300 and k = 4. We set P° = 1. The number of iteration is 1,000. We choose four 

symmetric distributions and two non-symmetric distribution for et. The Uniform 

distribution within [-4,4], the standard normal distribution, the student t-distribution with 

3 degrees of freedom and the Cauchy distribution with interquartile range 1 are selected 

for symmetric distributions. These represent moderate, heavy and very heavy tailed 

distribution. For the non-symmetric distribution, we choose the shifted Chi-square
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distribution centered at zero with 12 degrees of freedom and the shifted Rayleigh 

distribution centered at zero with parameter being 4. xt is generated by the joint normal 

distribution, N(0,X) where covariances are all 0.5 and variances are one13. The first entry 

of xt is one.

In order to compute the combination of the two estimator, we need to estimate the 

error density evaluated at zero and the covariance matrix between two estimators. We 

estimate the density using a Kernel method with Gaussian Kernel. See the Appendix for 

detail discussion. Since both estimators are in the RCASOI (Regular Consistent 

Asymptotically Second Order Indexed) class, we can exploit the score and Hessian 

representations of both estimators to compute the covariance matrix. See Bates and 

White (1993) for a detail discussion. For each iteration, we compute the quadratic loss 

value for each estimator. We approximate the risk by averaging the loss value over 

simulation. Once we obtain the approximated risk for each estimator, then we compute 

the risk improvement (in percentage) relative to both the LAD estimator and the OLS 

estimator. All results are collected in Table 1.5.1 to 1.5.8.

It is known that the performance of the median compared with the sample mean is the 

worst among symmetric distributions in terms of asymptotic variance when the error is 

distributed uniformly. As expected, the risk of the LAD estimator (62.822) is greater than 

the risk of the OLS estimator (21.988) for the Uniform distribution with [-4,4]. All 

combination methods give negative weight to the LAD estimator. Both the OWS 

estimator and the NRC estimator dominate the JSC estimator. The risks of both the OWS 

estimator and the NRC estimator are smaller than the risk of the OLS estimator. When 

the regression error is normal, this is the case where the guess estimator (OLS) is 

asymptotically efficient. The risk of the OLS estimator (4.1213) is mildly smaller 

compared with the risk of the LAD estimator (6.2219). All combination methods again 

give negative weight to the LAD estimator. Both the OWS estimator and the NRC

13 We use the multivariate normal random vector generator, G05EAF AND G05EZF in the MATLAB NAG 
Foundation Toolbox. We initialize the generator using G05CBF with the input, 22824 for each iteration. 
This means that we have the exactly same explanatory variables for each error distribution and for each 
guess so that we can compare the effects of different error distributions and different guesses.
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estimator dominate the JSC estimator. All combination estimators have smaller risk than 

the LAD estimator, but greater than the OLS estimator. However, the deterioration of the 

OWS estimator and the NRC estimator relative to the OLS estimator is not large (-0.86 % 

and -0.83 % respectively). The Student-t distribution with 3 degrees of freedom has a 

relatively fat tail. As expected, the risk of the LAD estimator (7.348) is smaller than the 

risk of the OLS estimator (11.253). The weight to the LAD estimator is about 0.65 - 0.67 

for all combinations. All combination estimators have smaller risk than both the LAD 

estimator and the OLS estimator. The improvement over the LAD estimator and the OLS 

estimator is about 1 - 3 % and 35 - 37 % respectively. Again, the OWS estimator and the 

NRC estimator dominate the JSC estimator. The Cauchy distribution represents a heavy 

tailed distribution. The performance of the OLS estimator is worst compared with the 

LAD estimator in terms of risk (236944.289 and 10.406 respectively). Nevertheless, 

combining the LAD estimator with the worst OLS estimator makes an improvement on 

the LAD estimator. The improvement over the LAD estimator and the OLS estimator is 

about 1 -1.3 % and 100 % respectively.

The LAD estimator is worst compared with the OLS estimator in terms of risk 

(241.174 and 82.235) when the regression error is Chi-square distribution with 10 degrees 

of freedom. However, all combination methods fail to give negative weight to the LAD 

estimator. For the OWS estimator and the NRC estimator, the weight is very small 

(about 0.089 - 0.096). On the other hand, the JSC estimator give a large positive weight 

to the LAD estimator (0.807), which clearly shows the inferiority of the JSC estimator 

when the regression error is not symmetric. The failure can be explained by the bias in 

the constant coefficient, which makes the distance between two estimators very large 

(172.039). This in turns makes the JS weight over-estimated. The bias might also 

explain why the OWS estimator and NRC estimator fail to combine the two estimators 

optimally. All combination estimators are better than the LAD estimator, but worse than 

the OLS estimator. When the error has the Rayleigh distribution with parameter being 4, 

the result is basically same as in the Chi-square distribution. However, the skewness (- 

0.373) is smaller than in the Chi-square distribution (-0.660). As a result, the bias in the
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constant term is much smaller. The OWS estimator and the NRC estimator now give 

small negative weight to the LAD estimator.

We summarize the simulation results. First, the OWS estimator and the NRC 

estimator always dominate the JSC estimator. Second, the performance of the OWS 

estimator is virtually same as the performance of the NRC estimator. The contribution of 

the random weight is negligible. We recommend to use the NRC estimator because the 

weight is much easier to estimate. Third, when the regression error has a symmetric 

density (except normal density), all combination methods make improvement on both the 

LAD estimator and the OLS estimator. Lastly, when the density of the regression error is 

not symmetric, all combination methods seem to fail to find the optimal weight. The 

degree of failure seems to depend on the bias in the constant coefficient in the LAD 

estimator which is affected by the skewness of the density of the regression error. The 

bias in finite sample seems to have a big impact.

1.6 Out-of-Sample Predictive Ability: Empirical Study

In this section we investigate the out-of-sample predictive ability of the combination 

estimators developed in previous sections using two different data sets. In this 

application we combine the OLS estimator and the LAD estimator. We perform a 

comparison study where various estimators such as the OLS estimator, the LAD 

estimator, and stable estimators14 (e.g. the Ridge estimator, the Garrotte estimator, the 

Non-negative Garrotte estimator and the LASSO estimator) are compared. We also 

estimate pre-determined combination (PDC) of the LAD estimator and the OLS estimator

14 There is a class of estimators which has been developed in particular to improve out-of-sample 
predictability. Brieman (1994) argues that the good in-sample fit and the poor out-of-sample performance 
of the OLS estimator comes from the fact that it is unstable in the sense that a small change in data can lead 
to a big change in the predictor. His idea is to stabilize the OLS estimator by shrinking it towards zero. 
Based on this idea, Brieman (1994, 1995) proposes new estimators such as die Garrotte and the Non- 
Negative Garrotte. By a variety of simulation experiments he shows that the out-of-sample performance of 
the Garrotte, the Non-Negative Garrotte, and the Ridge estimators can be better than the OLS estimator. 
Motivated by Brieman’s work, Tibshirani (1994) developed the LASSO (Least Absolute Shrinkage and 
Selection Operator). Even though there is no formal definition of stability, we call this class of estimators 
stable.
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using a pre-determined weight called “Active Weight”. We vary the weight with the 

increment being 0.05 over the closed interval [0,1]. In fact, the PDC contains the OLS 

estimator and the LAD estimator as special cases where the weight is 0 and 1 

respectively. Therefore a total of 28 estimators are considered in the study. Their 

definitions are given in Table 1.6.1.

In order to evaluate the forecasting power, we use the following forecasting error 

measurements. Let y be the out-of-sample actual values and let e be the prediction errors.

t l e j
PMSE(e) = e’e/T PMAD(e) = k~'T -

2 PMSEje) 2A= PMAD{e)
S \ y ) '  MAD{y) '

i > „ -  yi
S2(y) = MSE(y>- y 2, MSE(y) = y’y/T and MAD(y) = -k *-■- -----  where y is the

sample mean and T is the number of out-of-sample observations15.

We consider two data sets: daily Korean interest rates and daily US stock returns. The 

Korean interest rates considered are the 3 year Corporate Bond Rate (CBR) and the 3 

month Certificate of Deposit Rate (CDR). See Figure 1.6.1 and Figure 1.6.2 for time- 

series plots for the variables. The US data set contains daily returns on ADC TeleCom 

Co. and HomeStake Co. stocks which are randomly chosen from the DATASTREAM 

database. We use daily excess returns which are obtained by subtracting the 3 month US 

T-bill rate from the returns. Table 1.6.2 and 1.6.3 provide summary statistics for both 

data sets.

15 The prediction R2 is not necessarily positive because out-of-sample predictions are not guaranteed to be 
orthogonal to out-of-sample residuals. The prediction R2 compares the performance of a predictor to the 
imaginary situation where we are given the sample mean of the target variable over the entire out-of-sample 
period in advance and use it as our predictor. Therefore, positive prediction R2 indicates that the predictor 
is better than the sample mean assumed to known in advance in terms of PMSE. If we define e* to be the 
out-of-sample error of the sample mean, then 

S2(y) = PMSE(e*).
Therefore, R2 > 0 is equivalent to PMSE(e*) < PMSE(e).
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Since we fail to reject the unit root hypothesis for the Korean interest rates, we use 

differenced variables. The forecasting model is
k l  k 2

ADept = a  + SPiACBR,^ + XYiACDR,., +£t.
i = l  i= l

We use ACBRt and ACDRt as our dependent variables. We set kj = k2 = 1. This model is 

for the one-step forecast horizon forecasting model.

We use 100 observations to estimate the model. Once we estimate the model, we then 

form 1 one-step out-of sample forecast, which completes one cycle of the estimation- 

forecasting process. After one complete cycle, we delete the first in-sample observation 

and add the first out-of-sample observation which we try to forecast during the first cycle. 

With this new 100 in-sample observations, we do the second cycle in the exactly same 

way. We complete 100 cycles in total generating 100 one step ahead point forecasts16. 

After we get the 100 point forecasts, we calculate the PMSE, PM AD, R2 and R2A. In 

other words, we use a rolling window prediction method where the estimation window 

size is 100, the prediction window size is 1 and the total number of windows is 100. We 

repeat the 100 estimations and forecasts for each of the 28 estimators and for each of the 

target variables17. The outcomes are summarized by Table 1.6.4 and Figure 1.6.3 through 

Figure 1.6.8.

£ =

16 The out-of-sample period is 2/2/94 - 6/7/94.

17 In order to estimate the optimal combination weight for the JSC and OWS estimators, we need to obtain a 
Choleskey decomposition of an estimated joint covariance matrix ( £  ) where

A A -  A

A -  A ’ A -  A -  A ’- f l
While the population joint covariance matrix is theoretically (semi) positive definite, the estimated sample 
covariance matrix sometimes fails to be so. In such case, the typical problem is that one of eigenvalues is 
negative. Since £  is real and symmetric, there exit Q , A  such that £  = Q A Q '  where columns of Q are 
eigenvectors and A contains eigenvalues on diagonal and zeros off diagonal. As long as all eigenvalues are 
non-negative we can obtain p  = QA.'n  as square root matrix. If there exists at least one negative 
eigenvalue, we cannot obtain such matrix. This is a potential problem in an empirical study. In this 
application, we encounter this problem when we analyses the Korean interest rate data sets, but not the US 
stock return data set. For the Korean data set we adjust the prediction period such a way we can avoid the 
problem. We guess that this problem has to do with the estimated covariance, A because in two extreme 
cases where (1) A = 0 (2) A = A , t  is guaranteed to be (semi) positive definite. By the continuity 
property, there exits a c e  (0,1) such that
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The performance of the PDC estimators can be visually described by two plots. One is 

the plot of the PMSE against the active weights (PMSE plot, See Figure 1.6.3 and Figure 

1.6.6) and the other is the plot of the PMAD against the active weights (PMAD plot, See 

Figure 1.6.4 and Figure 1.6.7). It is interesting that the LAD estimator has smaller PMSE 

than the OLS estimator and the PMSE is decreasing with active weight as visualized in 

Figure 1.6.3 and Figure 1.6.6. We can represent an estimator as a point in PMAD-PMSE 

space by drawing the scatter diagram o f the PMAD and the PMSE (Figure 1.6.5 and 

Figure 1.6.8). In this diagram, we prefer the estimator which is located closer to the 

origin because the PMAD and the PMSE can be treated as bad commodities. We call the 

scatter diagram generated by the PDC estimators "active line". On each point of the 

active line, there is a corresponding active weight. We represent other estimators by its 

first initial in PMAD-PMSE space except the NRC estimator denoted by “c” and the 

Random Walk predictor denoted by “w”. For example, "r" stands for the Ridge estimator 

and “g” for the Garrotte estimator and so on. For the CBR target variable, the Garrotte, 

Non-negative Garrotte and JSC estimators outperform all other estimators (See Figure 

1.6.5). The NRC and OWS estimators have virtually same performance and are located 

near the active line. The out-of-sample forecasting for the CDR gives very similar 

pictures. The LAD estimator attains the best performance in terms of both PMSE and 

PMAD. The performance of the combination estimators are located between the LAD 

estimator and the OLS estimator. According to prediction R2 the CBR is more difficult to 

predict than the CDR. All estimators give negative prediction R2 when they are used to 

predict the CBR. However, for the CDR the LAD estimator and all combination 

estimators attain positive prediction R2.

We have the following forecasting model for the US excess returns.
fcl *2

r .=  + X f t ' V , + e  t
i = i i= i

A A -  cA
Z ( c ) = ...................................................

[_ A -  cA ' A -  cA -  cA B

is (semi) positive definite. Using £  (c) seems to be better than using £  ( 0 ) ,  but in either case it is not
consistent for A.
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where rmt is the daily excess returns on the S&P500 index and ki = k2  = 1. The efficient 

market hypothesis predicts that a  = (3 = Y = 0- In other words the best predictor is zero. 

We call this Random Walk predictor and we include this in our comparison study. We 

set the size of estimation window and the number of prediction window to be 520 which 

is about two year sample period18. Again we use a fixed rolling window method.

The outcomes are summarized in Table 1.6.5 and Figure 1.6.9 through Figure 1.6.14. 

For ADC TeleCom Co. stock return, the LAD estimator again has smaller PMSE than the 

OLS estimator, but the PMSE is quadratic so that the PDC estimator with weight 0.75 

achieve smaller PMSE than both estimators. Due to the quadratic effect, we have a 

curved active line in Figure 1.6.11. In this case, all combination estimators outperforms 

both the LAD and the OLS estimators in terms of PMSE. They also achieve better 

performance than stable regression estimators. Interestingly all estimators beat the 

Random Walk predictor in terms of PMSE, but the Random Walk predictor beats all 

estimators in terms of PMAD. Therefore, we have the situation where ‘The random walk 

wins partially.” We have even stronger quadratic effect for HomeStake Co. return where 

the OLS estimator has smaller PMSE than the LAD estimator. As a result, the active line 

in Figure 1.6.14 is strongly convex toward the origin. The Non-negative Garrotte, 

Garrotte, Ridge and JSC estimators outperform all other estimators in terms of both 

PMSE and PMAD. The Random Walk predictor shows almost identical patterns. For 

the two US stock return data set, the combinations estimators generally achieve better 

performance than the LAD and OLS estimators but the magnitude of improvement is very 

small.

1.7 Conclusion

We have proposed an extension of the JS estimator in a direction that its risk 

improvement can be preserved when the sample size goes to infinity. This extension can

18 The out-of-sample period is 4/5/94 - 3/29/96.
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provide a reasonable answer to the problem of the JS estimator that it bas been confined 

primarily to small sample situation. This extension turns out to be equivalent to 

combining two estimators using a random combination weight. We have proposed the 

Optimal Weighting Scheme Estimator which includes both random combination and non- 

random combination as special cases. Using the asymptotic risk improvement results, we 

have applied shrinkage techniques to robust regression, especially the LAD Estimator, 

proposing three combination estimators. Our simulation shows that the shrinkage LAD 

estimator works, and makes some improvement over the LAD estimator as well as the 

OLS estimator except several cases. Even though I currently consider only the OLS 

guess, it seems plausible that I can refine the guess by choosing a robust estimator with an 

asymptotic normality distribution. It should be interesting to see how out-of-sample 

predictability, robustness, and risk improvement are affected by using a robust guess. 

The application of combination estimators to interest rate and stock return forecasting 

shows that it has some potential to improve out-of-sample forecasts.

Appendix: Proofs and Discussions 

Proof o f Theorem 2-2
(1) U„ = n ,/2(bn- g n) = n 1/2(b„-P° + P°- g„) = n 1/2(b„- P°)- n1/2(gn-P°) U a U , - U 2 
by Assumption 2-4 and the continuity property.
(2) n,/2(8(b„,gn) - P°) = n1/2[n'1/2K(Un,n'lQ„) + (g„ -0°)] = K(U„, n lQ J  + n ,/2(gn-P°) 
K(U,Q) + U2 by (1), Assumption 2-3.
(3) L(8(b„,gn),P°) = h(n‘/2(8(bn,g„)-P°), n'Q„) - * - >  h(K(U,Q) + U2,Q) = h(n1/2K(U,Q) + 
U2, n 'Q )  = L(K(U,Q),-U2) by (2).
(4) AR({8(bn,gn)},P°) = E{L(K(U,Q), -U2)}by (3). Q.E.D.

Proof o f Theorem 2-4
Let f(X) =  AR({8xJS(bn,gn)},P°). By Corollary 2-3 f(X) =  toX2 -2vX +  k  where 00, v and k  

are defined as in Theorem 2-4..
(1) f  (X) = 2coX - 2v and f ’(X) = 2 (0 . Since co > 0 by Assumption 2-6, f ’(X) > 0 for any X.
(2) Setting f  (X) = 0 and solving for X, we have X* = v/co.
(3) By plugging X* = v/co in f(X), we have f(X*) = AR({8x*JS(bn,gn)},P°) = -v2/co + k

(4) and (5) are obvious and omitted. Q.E.D.
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Proof o f Corollary 2-6
Let f(X) = AR({8xNR(bn,g„)} ,p°). By Corollary 2-5 f(X) = R(8xnr(U,,U2),0). It can be 
shown using some algebra that f(A.) =  aX2 - 2fiX + k .

(1) V(X) = 2aX  - 2(5 and f ’(k) = 2 a . Since a  > 0 by Assumption 2-6, f ’(^) > 0 for any X.
(2) Setting f  (X) = 0 and solving for X, we have X* = p/a.
(3) By plugging X* =  p /a  in f(X,), we have f(X*) =  AR( {8Jl*NR(b„,gn) } ,P°) =  -p2/ a  +  K
(4) and (5) are obvious.
(6) We can show that f(X*) = - ' / / a  + AR({gn},P°) which completes the proof. Q.E.D. 

Proof o f  Theorem 2-8
Let f(X) = AR({8j°w(b„,gn) },P°). By Corollary 2-7 f(X) = R(8xnr(U,,U2),0). It can be 
shown using some algebra that f(A.) = aXi2 - 2$X\ + 2X\Xz + ( ok2 - 2vX2 + k.
(1) The first order conditions are given by 

f 1(X) = 2aXI - 2 p  + 2X2 = 0.
f2(X) = 2X\ - 2v + 2©A,2 = 0.

Since i(X) = 2a, f22(X) = 2©, and fi2(X.) = 0, the Hessian matrix is given by 
\2 a  01

H = _ .  which is positive definite.0 2(0 v
(2) Setting fi(X) = 0 and solving for X,

Xi* = (a© -l)'(P© -v).
X2* = (a © -l) ‘(av-P).

(3) By plugging A,i* = (a © -l) ‘(p©-v) and X2* = (a© -l)'I(av-P).in f(X) and doing some 
algebra,

f(A.*) = AR( {5x»NR(bn,gn) } ,P°) =  (aco-l)'2[-ap2©2-(2aPv-a2v2+p2)o>+(av2-2Pv)] + k.
(4) Let h(©) -[-ap2©2-(2aPv-a2v2+p2)co+(av2-2Pv)]. We want to show h(©) > 0 for all 
CO.

Case 1: P = 0 & v = 0. Then h(©) =  0.
Case 2: P = 0 8c v *  0. Then h(co) =  a v 2(aco-l) > 0 because a  > 0, v *  0 and a©  > 1.
Case 3: P *  0 & v = 0. Then h(©) = p2©(a©-l) > 0 because © > 0, p *  0 and a©  > 1.
Case4: P *  0 & v * 0 . Let ©* e  {©I h(©) = 0}.

Sub-case 1: a v  - p = 0. Then ©* = -(a2v2-p2-2apv)/2ap2.
It can be shown that © > ©* because a©  > 1 and P *  0.
This implies that h(©) > 0 for all ©.

Sub-case 2: av  - P *  0. Then
©.* = v(2P-a)/p2 and ©+* = 1/a with ©.* < ©+*.
It can be shown that © > ©+* because a© > 1.
This implies that h(©) > 0 for all ©. Q.E.D.

Proof o f Corollary 2-9
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(1) Let X be a random variable which satisfies (1) Prob[X = p.] < 1 and (2) Prob[X > 0] 
= 1.
Then we can show using the strong form of Jensen’s Inequality that 1/E(X) < E(l/X).
Let X be (Ui-U 2)’Q(Ui-U2). Then the first condition is satisfied by Assumption 2-7 and 
the second condition is satisfied by Assumption 2-3 and Assumption 2-6.

Therefore, we have 1/E[(C7, - U 2),Q(Ul - t / 2)] < E ~ \ ____ r r -  which

implies 1 /a < oo.
(2) ^i*>0<=>pco-v>0<=>v-pco<0<=>

Ui ’Q(Ul - U 2)
S V x- U 2yQ(Vx- U 2) J

Cov u x' Q ( y x- u 2),

- e [u x'Q(u x- u 2) ] b  

1

1
L W i - U 2YQ{Ul - U 2) \

<  0 <=>

(JJx- u 1y o n U x - u i ) \  
(3) X2* > 0  <=> av  - P > 0 <=> P - av  < 0 <=>

E[t/, w ,  - f / 2) ] -E [ ( t / ,- u 2yQ(Vx - M e

Ux 'QW x- Uz )

< 0 .

Ul ’Q(Ux- U 2)

Cov ( u t - u 2y Q ( Ut - u 2), ( V x- u 2y Q ( u x- u 2) \

L ( £ / .  - C / 2) ’ Q ( t / , - C / 2 ) J  

< 0 . Q.E.D.

< 0 <=>

Proof o f Corollary 2-10
Let f(^.) = AR( {5,ow(bn,gn)} ,p°) which has a global minimum at X*. Therefore for any X 
we have
AR({8,.ow(bn,gn)},p°) < AR({8x0W(bn,g„)},P°).
(1) Let X = [0 X.2 *]’. ThenAR({8,.0W(bn)gn)},P°)<AR({8x0W(b„,g„)},p0).
It can be shown by some algebra that AR({8X (bn,gn)} .P ) = -v /co + k  =
AR({8x*JS(bn,gn) } ,P°). We know that [A-i*, X.2*] is the unique and global solution. Hence, 
if X,i* is not
equal to zero, then [0 ta*] is not optimal and the strict inequality holds.
(2) Let X = [Xx* 0]’. Then AR({8,.ow(bn,g„)},p°) < AR({8 ° w(b„,gn)},p°).
It can be shown by some algebra that AR({8xow(bn,gn)},p0) = -p2/a  + K =
AR({8x*NR(bn,gn) },P°). We know that [Xi*, X2*] is the unique and global solution.
Hence, if X2* is not equal to zero, then [X,i* 0] is not optimal and the strict inequality
holds. Q.E.D.

Proof o f Corollary 2-11
(1) a  = E(V’QV) where V = Ui - U2 ~ N(0, £ 2 2)- Since a  is the sum of variances and 
covariances of normal random variables, its absolute value is finite.
(2) P = E(UiQV). Since P is also the sum of variances and covariances of normal random 
variables, its absolute value is finite.
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(3) Note that
1 1 1 Y’Y

V ’QV Y 'RY Y’Y T R Y
where Y = P 'V  with PP’ = 'Ln and R = P’QP.

1 Y ’Y  1
It can be shown that —— < v < ~  where Am and X™ is the largest and smallest

Y RY Am
This implies that 

1
eigenvalues of R (hence, of Q) respectively.

Ifk>2- ,henI ^ h ) £

(4) Note that v2 < e [(U'xQ V)2] ^ j ^

Q ) < - K i k - 2 ) '  

by the Cauchy-Schwarz inequality. Since

Ui and V are normal random variable, e \ (UxQV)2\ < For m (3) we have

1
( F T )

1

< E
1

XM2( k - 2 ) ( k - 4 )
< E

(V’QV)2 

1

V  l (Y’Y)2]

(V’QV) V ( k - 2 : ) ( k - 4 )

. If k 2 and k * 4, then

. Therefore, Ivl < Q.E.D.

Proof o f Corollary 2-12
(1) a  = e[(C/, - U 2)’Q(Ux - U 2)] =tr{ E [(£ /,- U 2)’Q(UX- U 2)]}

= E{tr[(C/,- U 2)’Q(Ut — U2)] }= E{ tr [( t/, - U 2)(UX- U2)’Q)}

= tr{E[(C7, - U2)(UX - U2)’Q j }= tr[(A-A-A’+B)Q].

Since tr( ) is a continuous function, a  = fr[(A -  A -  A’+ B )g] is consistent.

(2) By the same reasoning, f i  = tr[(A -  AOQ] is consistent.
(3) We define g (l,22Q,t) == det(7 + 2tJ,22Q). Then we want to show that there exists a 
domination function, d(t), such that

1) I g (£ 22Q,r) I ^  d(t) for all £ 2 2  and Q in a compact parameter space.
00

2) \ d ( t )d t <  0 0 .

Using the relationship between determinant and eigenvalues of a matrix, we can express 
g(.) in terms of eigenvalues as follows.

= T U
1/2

1=1

where A* is an eigenvalue of the inverse matrix of M tZ ^Q - Using some linear algebra, 
we can obtain an upper bound given by

4 {whr}*
where k  is the minimum (in absolute value) eigenvalue of Z2 2Q- Now we define d(t) as
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As long as k > 2 which is assumed in the corollary, the domination function, D(t), can 
satisfy the other condition. Hence we have the desired result.
(4) We define G(M ,Af , ,0  = t r (Mt( I +  2 t M y t )[det(I+ 2tM)Yu2. Then we want to 
show that there exists a domination function, D(t), such that

1) \ G ( M , M , , t ) \ <  D(t) for all M and M] in a compact parameter space.
oo

2) j D ( t ) d t < o o.
0

Define G , ( M ,M , ,0  a  *r(A#,(/ + 2fAf)_l) and G2(M,M,,r )  = [det(7-t-2fAf)]"1/2. By 
using the similar argument, we can show that

G , (M ,M , , ! )2 £  { ' ^ T t } *  

where K is the minimum (in absolute value) eigenvalue of M.
Using the trace version of Caucy-Schwarts inequality, we can obtain an upper bound for 
G2( M ,M , , r ) .

Where £  is the maximum eigenvalue of Mi. By combining the two results, we have 

Now we define D(t) as

D W = 2 k ' ? ' { ^ - f  ■

The domination function, D(t), can satisfy the other condition. Hence we have the 
desired result. Q.E.D.

Proof o f Corollary 2-13
(1) Both \  and ^  are continuous function of the consistent estimators. Since the 

limit of continuous function of consistent estimators is the value of function evaluated at 
the limit of the consistent estimators, we have the desired results; A,„— % and

(2) The result immediately follows from Corollary 2-7; n1/2(8x*ow(bn,gn)-P0) — — > 
5,.ow(U,,U2).

(3) The result follows from the result in (1) and (2);
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n 1/2( ^ ow(bn,gn)-p°) SX.0W(U,,U2).

(4) The result follows from (3) and Corollary 2-7. Q.E.D.

Proof o f  Corollary 3-1 
L(b„,p°) = (bn-P°)’Xn’Xn(bn-P°)

Y n Y n1/2 si. t>(k» ^  A 1/2 /1. oOn= n (bn-p ) ----------n (bn-p )n

= [n1/22f(0)(2f(0))'1PP'1 (b„~p0)] ’ [n1/22f(0)(2f(0))-,P F 1(bn-P°)]
n

where PP’ = Q '1.
-» (2f(0))'2Z ’Z where Z ~ N(0,I).

Hence AR({b„},p°) = E((2f(0))-2Z’Z) = (2f(0))'2k. Q.E.D. 

Proof o f  Theorem 3-2
AR({b„JSLAD},P°) = (2f(0))'2E {L(K(U,Q), 0)}

= (2f(O))-2E([K(U,Q)-0]’Q[K(U,Q)-0])
f  1 \

where K(U,Q) =
U’QU

U and E(U) = 0.

f(*) = - r X Knh i=J

= (2f(0))-2{k-X(2(k-2)-X)E^k + ̂ p _ 2- ] }

where P ~ Poisson (0’Q0/2) and 2(f(0))2(p°-g„)’Xn’Xn(p°-g„) —^-> 0’Q0/2.
(See Stein ( l955) for detail.) Q.E.D.

Density Estimation using Gaussian Kernel
Suppose we have a random sample {ej, i = l, ... , n} from a population with a density, 

f(x). The Kernel estimator of this density is given by 
(  x - e A
v h J

where K(x) is the standard normal density function, and h is the bandwidth. We use 
Silverman (I986)’s method to select the optimal bandwidth, h. We want to choose h such 
that it minimizes the mean integrated square error (MISE) of the density estimator. That 
is

h e  argmin MISE( f ( x ) ) = e Q  {f(x)- f(x)}2d x ) .

The solution is given by

h*= k2’2/5(J K (t)2dt)l2 (J f ”(x )2dx)"l/2n l/2

where k2 = J t 2K(t)dt. The problem with this solution is that it depends on the second 
derivative of the density which has to be estimated. If f(x) is the standard normal
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density, then J f ” (x)2dx « 0.212a's. In this case, h* *  1.06on'1/5 «  0.79Rn'1/s where R is
the interquartile. It turns out that this is a good approximation for any density function. 
This approximation is sensitive to the skewness of the underlying density function, but 
not to kurtosis. All density functions except the Chi-square distribution we consider are 
symmetric. Hence this choice of the bandwidth can be justified.

Why does minimizing sum o f absolute errors give the median estimator?
n

Let fi  e  argmin n ' ^ l y ,  -  f i \ . Then fi  is the sample median.
/

Heuristic Proof: Let m be the sample median. For simplicity, assume that n is odd. Then 

S l [ y , < / n ] = ( n - l ) / 2
r

£ l[y ,.  >m ] =(n-l)/2
t

2 l [ y ,  = m ] ~  1 
/

We want to show fi = m. Suppose that fi *  m. Without loss of generality, suppose that 
fi  = m + e. Then by the definition of fi  we have the following.

n n

n_,]£ly ,  - f i \  < n -X ly ,. -m l .
t t

Let Lj s  lyj - fi  I. Then L, = lyi - fi II[yt < m] + lyj - fi ll[yj > m] + lyj - fi II[yj = m] where 
tyi - fi II [yt < m] = lyi - ml + Im - fi  I 
lyi - fi  ll[yi > m] = lyj - ml - Im - fi  I 
lyi - fi  II [yi = m] = lyj - ml + Im - f i  I.

Therefore,

n _1£ l y ( - f i \  = n ”, ^ l y l- -m l + n '^ n - l ^ l m  - fi  I - n''(n-l)/2lm - fi I + n''lm - fi  I
/  t

n

= n ^ '^ ly , .  -  ml + n_1lm - fi I which is a contradiction. Q.E.D.
/

How to convert Lj problem into a linear programming?
The 0th quantile problem is given by

( I )  min - x ,0 \  {01 [yt >x,P] + (1-0)1 [ y ,< x tp].
t

If 0 = Vi, then this reduces to Li problem. Define 
u ,=  l[yt >x,P]ly,-x,pl 
vt =  l[y t <x,p]lyt - x tpl 
a - c = p.
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Then ( I ) is equivalent to the following linear programming.
ti

( I I ) min Y u{6u, +  (1 - 9)v ,)
r

subject to (1) yt = xt(a-c) + ut + vt t = 1 ,2 , . . .  n
(2) a, c > 0
(3) u, v > 0.

Testing whether fa* -  0 by Simulation
The basic model for the simulation is yt = Xt’p0 + et where t = 1, 2, ... , n, P° e  Rk, n = 
200 and k = 8. We set P° = 1. The number of iteration is 2,000. We choose standard 
normal distribution for et. xt is generated by the joint normal distribution, N(0,E) where 
covariances are all 0.5 and variances are one19. The first entry of xt is one.

We compute the OLS and LAD estimators and covariance matrices A,B,  A and

generate M (2000) random numbers
l m2, j

from the joint normal distribution

kxk ^ k x k
A

kxk & kxk  .

. Then we compute the following random variates.

(1 )  CXi =  (Uu-U2i)’Q(Uu-U2i)
(2 )  Vj =  U i j ’ Q(U i i-U2i)/(U i i-U2i) ’ Q(U i j-U2i)

Once we generate {(Xi, P i, C0j, V j, i = 1, 2 , . . . ,  M ), we compute the following statistics.
M

(1) a  = ( l / M ) X « ,
i

( 2 )  y 0 = ( l /
/
M

(3) m  = ( M M ) Y dcoi
i

M
(4) F  = ( l I M j ^ v . ,

I
(5 )  fa =  { a a  - 1)-1 ( av  -  f i )

M
(6) Cov(at , v;) =  (1 /  (at -  a ){v t -  v ) : Sample Covariance

i

(7 ) P-value20 for the null hypothesis H0: Cov(aj,V j) =  0

19 We use the multivariate normal random vector generator, G05EAF AND G05EZF in the MATLAB NAG 
Foundation Toolbox. We initialize the generator using G05CBF with the input, 22824 for each iteration. 
This means that we have the exactly same explanatory variables for each error distribution and for each 
guess so that we can compare the effects of different error distributions and different guesses.

20 The variance of sample covariance is given in Kendall M.G. and A. Stuart (1969) by
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This completes one single simulation. We repeat this simulation 2000 times which 
produces 2000 realizations of each of ̂ , Cov(at, ,) , and P-value. Figure A shows the 
histograms with number of bins being 500. ^  is distributed around 0.1048 and 
Cov(0Ct, v; ) is distributed around -0.0428. Even though many covariances are close to 
zero, the mean (-0.0428) seems significantly different from zero, which is supported by 
the fact that the percentage of P-value less than 0.1 is 55.3%.
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Table 1.5.1 Averaged Parameter Estimates
Uniform Normal Student-t Cauchy Chi-square Rayleigh

LAD P, 0.993 0.998 1.004 0.994 0.353 0.632
Pz 0.990 1.001 1.004 1.006 1.004 1.000
P3 0.997 0.998 1.001 1.002 1.007 1.010
P4 1.003 1.002 0.997 0.989 0.993 1.004

OLS pi 0.996 0.998 1.001 1.783 0.999 0.998
Pz 0.994 1.006 1.007 1.259 1.001 0.991
P3 1.003 0.998 1.005 1.856 1.021 0.999
P4 1.001 1.001 0.995 0.095 0.998 1.004

f(0) 0.131 0.389 0.348 0.272 0.091 0.117
[2f(0)]2 14.548 1.651 2.070 3.389 29.866 18.319
CT2 5.310 1.001 2.877 91380.121 19.979 10.745
a 1.369 1.540 3.537 93185.433 1.676 1.532
P 1.955 1.560 0.997 -11.369 1.502 1.594
V 1.440 1.034 0.330 -0.018 0.922 1.064
(0 1.386 1.265 0.645 0.010 1.178 1.272

1.424 1.009 0.338 -0.015 0.900 1.038
Xz 0.011 0.019 -0.014 -6.772 0.018 0.020
L 20.503 2.312 6.676 236897.640 172.039 67.491
w(NRC) -0.432 -0.022 0.666 1.015 0.089 -0.051
w(JSC) -0.514 -0.129 0.652 1.013 0.807 0.636
w(OWS) -0.440 -0.033 0.669 1.015 0.096 -0.046
w(NRC)+ 0.000 0.039 0.666 1.015 0.112 0.031
w(JSC)+ 0.233 0.315 0.710 1.013 0.810 0.669
w(OWS+ 0.000 0.037 0.669 1.015 0.117 0.033

Note: The combination weights are defined as
w(NRC) = 1 - (P/a) w(NRC)+ = max{0, w(NRC)}
w(JS)C = 1 - (v/to)L'' w(JSC)+ = max{0, w(JSC)}
w(OWS) = 1 - Xx - ^ L '1 w(OWS)+ = max {0, w(OWS)}
where L = ( b ^ - b ^ r X ’X fb ^ -b 01*).
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Table 1.5.2 Summary Statistics for Error Distribution.
Uniform Normal Student-t Cauchy Chi-square Rayleigh

Mean -0.003 -0.002 0.001 0.806 -0.001 -0.002
Median -0.008 -0.001 0.001 -0.007 -0.660 -0.373
Std. Dev. 2.304 1.001 1.676 71.288 4.465 3.274
Skewness 0.000 -0.001 0.027 0.264 0.867 0.622
Kurtosis 1.813 2.980 17.325 147.022 4.073 3.216

Table 1.5.3 Risk Comparison: Uniform Distribution
Risk Improvement 

relative to LAD
Improvement 
relative to OLS

LAD 62.822 0.00% -185.71 %
OLS 21.988 65.17 % 0.00%
NRC 17.340 72.40 % 21.14%
JSC 41.046 34.66 % -86.86 %
ows 17.339 72.40 % 21.14%
Positive NRC 21.988 65.17% 0.00%
Positive JSC 34.874 44.49 % -58.60 %
Positive OWS 21.988 65.17 % 0.00%

Table 1.5.4 Risk Comparison: Standard Normal Distribution
Risk Improvement 

relative to LAD
Improvement 
relative to OLS

LAD 6.2219 0.00% -50.97 %
OLS 4.1213 33.76 % 0.00%
NRC 4.1569 33.19% -0.86 %
JSC 5.1314 17.53 % -24.51 %
ows 4.1556 33.21 % -0.83 %
Positive NRC 4.1306 33.61 % -0.23 %
Positive JSC 4.7193 24.15 % -14.51 %
Positive OWS 4.1309 33.61 % -0.23 %

Table 1.5.5 Risk Comparison: Student-t Distribution
Risk Improvement 

relative to LAD
Improvement 
relative to OLS

LAD 7.348 0.00 % 34.70 %
OLS 11.253 -53.15 % 0.00 %
NRC 7.124 3.05 % 36.70 %
JSC 7.269 1.08% 35.41 %
OWS 7.124 3.05 % 36.70 %
Positive NRC 7.124 3.05 % 36.70 %
Positive JSC 7.182 2.25 % 36.17%
Positive OWS 7.124 3.05 % 36.70 %
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Table 1.5.6 Risk Comparison: Cauchy Distribution
Risk Improvement 

relative to LAD
Improvement 
relative to OLS

LAD 10.406 0.00% 100.00 %
OLS 236944.289 -22768.91 % 0.00%
NRC 10.269 1.32% 100.00 %
JSC 10.303 0.99 % 100.00%
OWS 10.273 1.28 % 100.00 %
Positive NRC 10.269 1.32% 100.00%
Positive JSC 10.303 0.99 % 100.00 %
Positive OWS 10.273 1.28 % 100.00 %

Table 1.5.7 Risk Comparison: Shifted Chi-square Distribution
Risk Improvement 

relative to LAD
Improvement 
relative to OLS

LAD 241.174 0.00% -193.27 %
OLS 81.235 65.90 % 0.00%
NRC 86.196 64.26 % -4.82%
JSC 199.925 17.10 % -143.11 %
OWS 86.249 64.24% -4.88 %
Positive NRC 85.370 64.60 % -3.81 %
Positive JSC 199.958 17.09 % -143.15 %
Positive OWS 85.553 64.53 % -4.03 %

Table 1.5.8 Risk Comparison: Shifted Rayleigh Distribution
Risk Improvement 

relative to LAD
Improvement 
relative to OLS

LAD 113.001 0.00% -165.90 %
OLS 42.499 62.39 % 0.00%
NRC 43.997 61.06% -3.52 %
JSC 87.585 22.50 % -106.08 %
OWS 43.976 61.08 % -3.48 %
Positive NRC 43.204 61.77 % -1.66%
Positive JSC 87.138 22.89 % -105.03 %
Positive OWS 43.255 61.72% -1.78%
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Table 1.6.1 Definition of Estimators
Estimator Definition

PDC (8a(w)) with 8PD(w) = bLS
weight (w) = 0

8PD(w) = wbLAD+ (l-w )b LSPDC (8a(w)) with
weight (w )e  (0,1)

8PD(w) = b1̂PDC (8a(w)) with
weight (w) = 1

Ridge (bR) bR e  argumin II y -Xb II2 st. bb < s
Garrotte (bG) b° e  argumin II y -Zy II2 

St. Zy= Xjjbj1̂  
y'Y< s

Non-Negative Garrotte (bN) bG e  argumin II y -Zy II2 
st. Zy = Xjjbj1̂  

y l < s  
y > 0

LASSO (bL) bLe  argumin II y -Xb II2 st. b’i < s

1. i is the unit vector.
2. Values for s are determined by multi-fold cross-validation.

Table 1.6.2 Summary/ Statistics (Korean Interest Rates)
cbr Acbr cdr Acdr

mean 13.18 -0.0026 13.53 -0.0023
median 13.10 0.0000 13.40 0.0000
maximum 15.50 0.4300 17.00 1.4000
minimum 10.97 -0.4500 11.25 -1.7300
standard error 1.08 0.0842 1.38 0.1908
skewness 0.21 -0.0629 0.31 -0.7832
kurtosis 2.16 7.4924 2.22 23.5690
ADF statistics -1.70 -7.34 -1.85 -8.69
Critical Value -2.56 -1.61 -2.56 -1.61
(10%)

1. ADF statistics for level was calculated with constant in the regression with 10 lags.
2. ADF statistics for difference was calculated with no deterministic components in

regression. Again 10 lags were used.

Table 1.6.3 Summary Statistics (US Stock Returns)
ADC TelCom. HomeStake Co.

mean 0.1472 0.0106
median -0.0142 -0.0210
maximum 11.9167 11.2545
minimum -22.1296 -12.4531
standard error 2.9448 2.5201
skewness -0.1703 0.0780
kurtosis 3.9286 1.9583
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Table 1.6.4 Prediction Result (Korean Interest Rates)
CBR Forecasting COR Forecasting

PMSE
R2A

PMAD R? R“ PMSE PMAD R*

OLS 0.001566 0.022570 -0.20003 -0.038250 0.006382 0.048341 -0.017570 0.014544
0.05 0.001558 0.022424 -0.19339 -0.031550 0.006358 0.048213 -0.013750 0.017145
0.10 0.001549 0.022278 -0.18707 -0.024840 0.006335 0.048085 -0.009980 0.019746
0.15 0.001541 0.022132 -0.18105 -0.018130 0.006311 0.047958 -0.006260 0.022347
0.20 0.001534 0.021987 -0.17534 -0.011430 0.006288 0.047830 -0.002590 0.024948
0.25 0.001527 0.021841 -0.16994 -0.004720 0.006265 0.047703 0.001028 0.027549
0.30 0.001520 0.021695 •0.16485 0.001983 0.006243 0.047575 0.004596 0.030150
0.35 0.001514 0.021549 -0.16007 0.008689 0.006221 0.047447 0.008115 0.032751
0.40 0.001508 0.021404 -0.15560 0.015394 0.006199 0.047320 0.011583 0.035352
0.45 0.001503 0.021258 -0.15143 0.022100 0.006178 0.047192 0.015002 0.037953
0.50 0.001498 0.021112 -0.14758 0.028805 0.006157 0.047066 0.018370 0.040538
0.55 0.001493 0.020966 -0.14403 0.035511 0.006136 0.046953 0.021689 0.042828
0.60 0.001489 0.020820 -0.14079 0.042216 0.006115 0.046850 0.024957 0.044933
0.65 0.001485 0.020675 -0.13786 0.048922 0.006095 0.046747 0.028176 0.047037
0.70 0.001482 0.020529 -0.13524 0.055627 0.006075 0.046647 0.031344 0.049060
0.75 0.001479 0.020383 •0.13293 0.062333 0.006056 0.046551 0.034462 0.051020
0.80 0.001476 0.020237 -0.13093 0.069038 0.006037 0.046455 0.037531 0.052979
0.85 0.001474 0.020092 -0.12923 0.075744 0.006018 0.046359 0.040549 0.054938
0.90 0.001472 0.019946 -0.12785 0.082450 0.005999 0.046263 0.043517 0.056898
0.95 0.001471 0.019800 -0.12677 0.089155 0.005981 0.046168 0.046435 0.058825
LAD 0.001470 0.019654 -0.12600 0.095861 0.005963 0.046089 0.049303 0.060443
NRC 0.001551 0.022204 •0.18829 -0.021440 0.006141 0.047022 0.020892 0.041416
JSC 0.001459 0.019984 -0.11822 0.080683 0.006014 0.046295 0.041128 0.056237
OWS 0.001549 0.022183 -0.18677 -0.020470 0.006140 0.047013 0.021096 0.041609
RIDGE 0.001524 0.020747 -0.16791 0.045605 0.006404 0.048086 -0.021010 0.019738
GAR 0.001447 0.020805 •0.10881 0.042921 0.006317 0.047330 -0.007210 0.035147
NNGAR 0.001450 0.020789 -0.11097 0.043669 0.006335 0.047189 -0.010070 0.038014
LASSO 0.001577 0.021926 -0.20838 -0.008650 0.006384 0.048369 -0.017940 0.013963
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Table 1.6.5 Prediction Result (US Stock Returns)
ADC TeleCom Co HomeStake Co.

PMSE PMAD R^ r m PMSE PMAD R5* R ^

OLS 11.02739 2.401711 •0.001410 0.000879 4.275478 1.578444 0.005622 -0.00955
0.05 11.02243 2.401033 -0.000970 0.001161 4.273883 1.577932 0.005993 -0.00923
0.10 11.01783 2.400355 -0.000550 0.001443 4.272477 1.577507 0.006320 -0.00895
0.15 11.01356 2.399721 -0.000160 0.001706 4.271260 1.577082 0.006603 -0.00868
0.20 11.00965 2.399154 0.000196 0.001942 4.270232 1.576675 0.006842 -0.00842
0.25 11.00608 2.398710 0.000520 0.002127 4.269392 1.576272 0.007037 -0.00816
0.30 11.00286 2.398321 0.000813 0.002289 4.268741 1.575870 0.007189 -0.00791
0.35 10.99998 2.397954 0.001075 0.002442 4.268279 1.575474 0.007296 -0.00765
0.40 10.99745 2.397595 0.001304 0.002591 4.268006 1.575094 0.007360 -0.00741
0.45 10.99526 2.397325 0.001503 0.002703 4.267922 1.574863 0.007379 -0.00726
0.50 10.99342 2.397056 0.001670 0.002815 4.268026 1.574732 0.007355 -0.00718
0.55 10.99193 2.396820 0.001806 0.002914 4.268319 1.574646 0.007287 -0.00712
0.60 10.99078 2.396632 0.001910 0.002992 4.268801 1.574561 0.007175 -0.00707
0.65 10.98998 2.396474 0.001983 0.003057 4.269471 1.574478 0.007019 -0.00702
0.70 10.98952 2.396353 0.002024 0.003107 4.270331 1.574396 0.006819 •0.00696
0.75 10.98941 2.396233 0.002034 0.003158 4.271379 1.574314 0.006575 -0.00691
0.80 10.98964 2.396112 0.002013 0.003208 4.272616 1.574232 0.006288 -0.00686
0.85 10.99023 2.395991 0.001960 0.003258 4.274042 1.574152 0.005956 -0.00681
0.90 10.99115 2.395876 0.001876 0.003306 4.275656 1.574075 0.005580 -0.00676
0.95 10.99243 2.395761 0.001760 0.003354 4.277460 1.574037 0.005161 -0.00673
LAD 10.99405 2.395646 0.001613 0.003402 4.279452 1.574043 0.004698 -0.00674
NRC 10.99121 2.396691 0.001871 0.002967 4.271405 1.577233 0.006569 -0.00878
JSC 10.99218 2.395732 0.001782 0.003366 4.269610 1.573878 0.006987 -0.00663
OWS 10.99136 2.396698 0.001858 0.002964 4.271247 1.577195 0.006606 -0.00875
RIDGE 11.10845 2.395347 -0.000540 0.003894 4.272639 1.572277 0.006282 -0.00561
GAR 11.02588 2.398849 -0.001280 0.002069 4.269367 1.573136 0.007043 -0.00616
NNGAR 11.01529 2.398690 -0.000320 0.002136 4.254709 1.569847 0.010452 -0.00405
LASSO
Random
Walk

11.00619
11.03380

2.393585
2.392080

0.000511
-0.001999

0.004259
0.004883

4.275490
4.300280

1.575523
1.565840

0.005619
-0.000147

-0.00768
-0.00149
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Figure 1.5.1 Uniform Distribution
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Figure 1.5.3 Student-t Distribution (Degree of Freedom = 3)

Student-t Distribution (DF = 3)
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Figure 1.5.4 Cauchy Distribution (InterQuartile = 1)
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Figure 1.5.5 Chi-square Distribution (centered at zero)

Chi-square Distribution (centered at zero)
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Figure 1.5.6 Rayleigh Distribution (centered at zero)
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Figure 1.6 .1 Korean 3 Year Corporate Bond Rate
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Figure 1.6.2 Korean 3 Month Certificate Deposit Rate
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Figure 1.6.3 Out-of-Sample MSE (CBR, Training Sample Size = 100)
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Figure 1.6.4 Out-of-Sample MAD (CBR, Training Sample Size = 100)
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Figure 1.6.5 Out-of-Sample Prediction (CBR, Training Sample Size = 100)
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Figure 1.6.7 Out-of-Sample MAD (CDR, Training Sample Size = 100)
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Figure 1.6.8 Out-of-Sample Prediction (CDR, Training Sample Size = 100) 
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Figure 1.6.9 Out-of-Sample MSE (ADC, Training Sample Size = 520)
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Figure 1.6.10 Out-of-Sample MAD (ADC, Training Sample Size = 520)
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Figure 1.6.11 Out-of-Sample Prediction (ADC, Training Sample Size = 520)
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Figure 1.6.12 Out-of-Sample MSE (HomeStake, Training Sample Size = 520) 
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Figure 1.6.13 Out-of-Sample MAD (HomeStake, Training Sample Size = 520)
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Figure 1.6.14 Out-of-Sample Prediction (HomeStake, Training Sample Size = 520) 
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Figure A Distribution of X.2 , Covariance and P-value 
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Chapter 2

Scaling Estimation of the Shrinkage Least Absolute Deviation 

Estimator using a Bootstrap Approach

58
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2.1 Introduction

One drawback of the shrinkage estimator generally and in particular those of Chapter 1 

is the lack of a measure of precision. Bootstrapping the standard errors or the confidence 

intervals is one solution for this problem.

Delaney and Chatterjee (1986) combine the bootstrap and cross-validation to estimate 

the ridge parameter. Vinod and Raj (1988) apply the bootstrapping method to a shrinkage 

estimator (a ridge estimator) to investigate the economic issues in Bell System divestiture. 

They identify a bootstrap problem: a lack of a pivot1 for the ridge estimator. For the ridge 

estimator denoted by bx where X is the ridge parameter, even the distribution of bx-(3 

depends on p. Brownstone (1990) bootstraps two improved estimators: Mundlak’s 

restricted principle-components estimator and a Stein-rule estimator which shrinks the 

OLS estimator toward Mundlak’s estimator. He uses non-pivotal statistics, i.e., the 

percentile method to get the sampling distributions. He shows that the non-parametric 

bootstrap provides a good estimate of the estimator's risk and standard errors, Vinod 

(1995) provides a solution to the non-pivotal problem for ridge regression by applying 

Beran's double bootstrap. This method involves a bootstrap within a bootstrap which is 

computationally intensive.

We provide a way to obtain the sampling distributions and confidence intervals for 

shrinkage estimators with a fixed and random guess based on a bootstrapping method. 

The asymptotic normality approximation does not apply because the limiting distribution 

of the shrinkage estimator is not a standard normal but is a nonlinear function of a normal 

random variable. It is well known that in order to get a better bootstrap confidence 

interval, one should use pivotal or asymptotically pivotal statistics. The importance of 

using pivotal statistics have been intensively discussed in bootstrap literature. See 

Hartigan (1986), Beran (1987), Hall (1987), Hall (1988). For general shrinkage

1 "A function T of both the data and an unknown parameter is said to be pivotal if it has the same 
distribution for all values of the unknowns. It is asymptotically pivotal if, for sequences o f known constants 
{an} and {bn}, a„T+bn has a proper non-degenerate limiting distribution not depending on unknowns." This 
definition is taken from Hall (1992) pp 14.
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estimators other than ridge estimators, it is unlikely that the necessary scaling estimators 

are available.

The basic idea is to use the Lemma 1 and Lemma 2 in Ullah (1990) to derive the first 

moment and the second moment. Ullah (1990) proves two lemmas which allow us to 

obtain the moments of the function of normal random variables by taking derivatives and 

to easily calculate the moments of the ratio of quadratic normal random variables. By 

taking derivatives of the limiting random variable of the shrinkage estimator, we calculate 

the asymptotic variance of the shrinkage estimator. We use a consistent estimator for this 

asymptotic variance to obtain the bootstrapping pivotal statistics.

2.2 Asymptotic Moments: James-Stein Estimator with Non-Random Guess

First we derive the asymptotic moments of the shrinkage estimator with a non-random 

guess. Consider y = X(5° + e where p° e  Rk , k > 2 and e is iid random vector. Let b„ be

an estimator satisfying that n1/2(bn-p°) ——» N(0,A). We define the JS estimator, 

5JS(b„,g„),

where X e  (0 , 2 (k-2 )) and gn is a non-random guess such that n 1/2(gn-P°) converges to a 

fixed vector, 0 which is called “finite sample guess bias”. In most cases, the optimal X is 

chosen to be k-2. We have the following result.

definite, there exists a matrix, P such that A = P P \ Let |X = - P 1© and z = P 'lU. Then z is

r
5JS(bn,gn) =  1 -

V

where n l/2(bn-gn) — » U ~ N(-0,A) and n 'Q n —— >Q.

U + 0. Since A is assumed to be symmetric and positiveDefine h(U)
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normally distributed with mean vector, |X and identity covariance matrix. Define H(z) as 

follows.

Some simple algebra shows that h(U) = P’H(z). Note that E(h(U) = PE(H(z)) and 

Var(h(U)) = PVar(H(z))P’. In the following we will give explicit expression of E(H(z)) 

and Var(H(z)).

Theorem 2-1 Asymptotic First Moment o f Shrinkage Estimator with Non-random Guess 

Let Hj(z) be the ith component of H(z), ie Hi(z) = (l-X/z’z)eiZ-ejH where ei is a k- 

dimensional vector whose elements are all zeros except the ith element being one. Then 

under some regularity conditions which allow us to exchange limit and integral, we have 

the following:

E(Hi(z)) = -XniW(|i) - ar(l)-' J (1 + 2 t)-k/2 exp (-(t /1  +  2t)|X’|X)(—(2t /1  + 2t)m)dt

Proof: See Appendix.

It is well known that most shrinkage estimators are not unbiased. As Theorem 2-1 shows,

non-random guess is not equal to zero. This means that shrinkage estimators with a non- 

random guess are not even asymptotically unbiased.

Theorem 2-2 Asymptotic Second Moment o f Shrinkage Estimator with Non-random 

Guess

Let vy = (i,j) element of E(H(z)H(z)’). Then under the same conditions as in the Theorem

2 - 1  we have the following.

Vjj =  ay  -  (b y  -  Cjj) -  (b ji -  Cji) +  djj

o

where W(p) = J ( l  + 2 t) _ k /2  exp(-(t / 1  + 2 t)p.’|i )d t .
o

the expectation of the limiting random variable of the centered shrinkage estimator with a
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where (1) ay = 1 if i = j and ay = 0 otherwise.
oo

(2) by = XTO)-1 J(1 + ) + //’W2f//e x p (-l /  2M’N uJu)dt
o

where Not= (l+2t)I

Ni, = 2t/(l+2t)I 

N2, = ( l / l+ 2 t )2Iy

Iy = zero matrix except (i,j) element being equal to one.
oo

(3) Cy = A+ii{pjW(p) + H I ) 1 J(1 + 2 t)-k/2 exp(-(t /1 + 2 t)ji’|i)(—(2t /1  +  2 t)n ,)d t}.
o

oo

(4) dij = X2r(2)-‘ J tdet(N 0l y m  ) + /l' W2l̂ exp(-1  /  2ju’ N ufi)d t .
o

2.3 Asymptotic Moments: Optimal Weighting Scheme Estimator

There is one potential problem to be considered, which is the non location-scale 

distribution problem. Typically the distribution of the limiting random variable for the 

shrinkage estimator is not a member of a location-scale family. If the distribution is from 

the location-scale family, then the usual studentization is enough to make a pivotal 

statistics. When this is not the case, Babu and Singh’s (1983) result that the bootstrap 

estimates the true sampling distribution up to a second-order term nevertheless justifies 

studentization for non location-scale families.

Using the same assumptions and notations in the Chapter 1, we have the following.

4n 1/2(8 0 W(bn,gn)-P°) 1 - 4 -
(Ux- U 2)Q(JUx- U 2) j

(Ui-U2) + U2 s

h(U)

where U = U,
U,

~ N
A A 

A’ B
. Also let p  = kxl

' k x l
and Z =

A A 

A’ B
Since £  is

assumed to be symmetric and positive definite, there exists a matrix, P such that £  = PP’.
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Let z = P 'u .  Then z is normally distributed with mean vector p. and identity covariance 

matrix. The limiting random variable, h(U), can be rewritten as

h(U) = j ,u  + j2u
U ' J X'QJXU )

where Ji = [Ik -Ik] and J2 =  [Ok IJ. Define H(z) as follows.

H (z )s a  _____^ ____
^  z 'P'JCQJ.Pz)

J]Pz + J 2Pz.

Some simple algebra shows that h(U) = H(z). Let Mj = P’Ji'QJjP, M2  = JiP, and M 3 = 

J2P. Then we can further simplify H(z). 

yL M 2Z
H(z) = Mz - A - f -  

_ z M xz j

where M = (1-A,|)M2  + M3

Theorem 3-1 Asymptotic First Moment o f the OWS estimator

Let Hj(z) be the ith component of H(z). Then under some regularity conditions which 

allow us to exchange limit and integral, we have the following:

E(Hi(z))=0.
Proof: See Appendix.

This result shows that even though shrinkage estimators with a random guess could be 

biased in small sample, we can obtain the unbiasedness in the limit as n goes to infinity. 

In other words, shrinkage estimators with a random guess are asymptotically unbiased.

Theorem 3-2 Asymptotic Second Moment o f OWS estimator

Let vy = (i,j) element of E(H(z)H(z)’). Then under the same conditions as in the Theorem

3-1 we have the following: 

vy = ay - by - Cy + dy 

where (1) ay = (i,j) element of MM’.
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2k 2k
(2) by =

m =l n=l

oo

where Em„=  r(l)'1 J lN 0lT1/2 trdyN , , , - 1 )dt andN 0,=  I+2 tM,.
0

(3) Cij = bjj.
2k  2k

( 4 )  d i j  =  7 l2 2 X X M 2 im F m n M 2 jn
m =l n=l

OO
where Fmn = r(2)'1 J tlN0t T, /2 trdyNo,”' )dt and N0,=  I+2 tM,.

o

Proof: See Appendix.

2.4 Covariance Estimation

In order to bootstrap the JS estimator with a random guess, we need to have an 

estimator for the covariance matrix between the base estimator and the guess. We 

provide an example o f the covariance estimator in a special case where the base estimator 

is the LAD estimator and the guess is the OLS estimator.

As shown in Bates and White (1993), both the LAD estimator and the OLS estimator 

are members in RCASOI (Regular Consistent Asymptotically Second Order Indexed) 

class under some regularity conditions. For any member, b„, in RCASOI class, there is a 

"score" representation (s°n) and "Hessian" representation (H°n) such that
U  ftO  _  t t O - 1 0  . „  / _ - l / 2 \bn -  P — H n S n 4" Op(n )•

Accordingly, we have the following representation for the two estimators.

s,,1-5  = 2 ^ X te, .  = 2 X E (X tX t ) .
;=! 1=1

Sn̂ 0  = - 2 X  X,  ( l[£iS0) -  1 / 2) • HnLAD = 2 f(0 )X E (X ,X t ) .
i=i t=i

where ut = yt - Xt p° and f(0) is the value of the density of ut at zero. Note that the 

asymptotic covariance can be approximated by
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Cov[n1/2(b„-p°), n 1/2(g„-p0)]

= E[n1/2(bn-P°)(gn-p0 )n 1/2]

= E [(n ' HnLAD)-,n-1/2snLADn-1/2 sn̂ ’(n- 1 H ^ ) 1]

= ( n ‘ HnLAD)'1E(snLADsnLS7n)(n ' 1 

We can simplify each term as follows.

(1) n' 1 Hn1̂ 0  = 2f(0)E(X,X,’)

(2) E(s„LADs„LS/n) = E(SuS2l’) 

where S u = -2X,( 1 [e, < 0] - Vi)

S2t = 2Xtet

(3) n 1 H„LS = 2E(XtXt’).

Theorem 4-1 Consistent Estimator for the Asymptotic Covariacne 

Suppose

(i) {yt,X,} is iid.

(ii) trE(XtX,’)<eo

(iii) f(0 ) P > f(0 )

(iv) E(Si,S2t’)< o o

T h e n P f C O n - 'X x . X / r ' t w - 'S ^ ^ / l ^ n - 'X ^ X , ' ] - 1 —^  A.
/=i »=i >=i

Proof: straightforward using the law of large number.

2.5 Application

In this section, we show how the method developed in previous sections can be 

implemented. We choose the LAD estimator as the base estimator and the OLS estimator 

as the guess. Bootstrapping the LAD estimator itself is not new in the literature. Hahn 

(1995) bootstraps the quantile estimator and shows that the bootstrap distribution 

converges weakly to the limiting distribution of the quantile estimator. However
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bootstrapping a shrinkage LAD estimator has not previously been studied, to our 

knowledge. We use a simulated data set instead of real data so that we can evaluate 

performance in terms of the true parameters.

An artificial data set is generated as y = X(3° + e where e e  R", (3° e  Rk , n = 80 and k 

= 3. We set (3° = 0. We choose the standard normal distribution for the error distribution. 

Each row of X is generated by the joint normal distribution2, N(1,E), where covariances 

are all 0.8 and variances are one. Once one set of data is generated we consider it as our 

original data set and pretend not to know the true value o f p°. The OWS estimator, 8 ™, 

and its asymptotic standard deviation, Sj, are computed using the original data set.

We consider the equal tail percentile-t method (studentized), equal tail percentile 

method (unstudentized), naive percentile method and "normal approximation" method for 

constructing confidence intervals for (3°. For the percentile-t method3, the population 

equation is given by

Prob[tLp < n 1/2(8 nj - p°,)/si < tup] = 1-a.

The ideal (l-a)%  confidence interval is (tLP, tup), but we cannot obtain this because the 

exact distribution of 8 „i is not known. This population equation can be approximated by 

the following sample equation.

Prob[tLs < nl/2(8 nj*- 8 „i)/si* < tus] = 1-a. 

where 8 „i*, Sj* are bootstrap estimates. Even though the sample equation can be solved in 

principle, in most cases it is intractable to solve it analytically because the empirical 

distribution from which the bootstrap re-sampling is taken is not continuous. Hence we 

approximate the solution to the sample equation using bootstrap re-sampling. By

2 We use the multivariate normal random vector generator, DNRVG, which is a FORTRAN subroutine in 
NSWC (Naval Surface Warfare Center) Library. We set the seed to be 3833981.

3 For the percentile method the population equation is Prob[tLp < 8ni - (3° < tup] = 1-a and the sample

equation is Prob[tLS < (8ni*- 8„j) < tus] = 1-a. We compute the naive percentile confidence intervals by taking 

a/2 and (l-a /2 ) percentile of {8ni\  i = 1, . .  B}. The formula for the normal approximation interval is [8ni-

1.96sj/nl/2, 8ni+ 1.96s/nlfl].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

67

bootstrapping (yt, Xt) pairs4, we generate {yi: i = 1. ••• , B} where = n ,/2(8 ni*- 8 ni)/Si*.
A A

We take the a/2 percentile ( t Ls) and (l-a/2) percentile ( tu s) as an approximation for tL 

and tus respectively. The (l-a)%  bootstrap confidence interval is given by

[Sni- t u s Si/nl/2, 8„i- t LsSi/n1/2].

Table 2.5.1 summarizes the regression results using the original data set. The LAD 

estimates have uniformly higher standard errors than the OLS estimates as we should 

expect, since the OLS estimator is the Maximum Likelihood estimator in this experiment. 

Interestingly the OWS estimates have smaller standard errors than the LAD estimates as 

well as the OLS estimates' standard errors even though theoretically we expect both the 

OLS and OWS estimators to have the same standard errors.

Table 2.5.2 shows the bootstrap 95% confidence intervals and some descriptive 

statistics about them5. The percentile-t bootstrap confidence intervals are [-.243, .434], [- 

.336, .296], and [-.349, .406]. They cover the true (3° correctly. Note that they are not 

symmetric intervals according to the 'shape' statistics. The non-symmetry can be 

visualized by the histograms of the standardized bootstrap estimates. In many cases, the 

enforced symmetry based on a limiting distribution argument causes size distortion. The 

asymmetric property can be considered as an advantage of using bootstrapping method. 

The percentile confidence intervals are fairly comparable to the percentile-t confidence 

intervals. They are also not symmetric and a little bit shorter. The naive percentile 

intervals have the exactly same length as the percentile intervals as expected because 

percentile intervals are a shifted version of the percentile intervals. Even though the 

limiting distribution is not normal, we include a "normal approximation" for comparison.

4 Brownstone (1990) and Vinod (1995) bootstrap residuals. We prefer bootstrapping pairs because it is 
more robust to assumptions on the error term. See Efron (1993). Also we use an iid bootstrap method. For a 
dependent stationary data, the stationary bootstrap proposed by Politis and Romano can be used.

5 A bootstrap iteration takes 2.46 seconds using FORTRAN program on a PC with 75 MHz Pentium 
processor. One reason for the long computation time is that we have to compute integrals over infinite 
intervals 72 times per iteration. See Theorem 3-2 in section 2.3. Since we have 3 regressors, the number of 
{Ey}, {Fjj} where i,j = 1 , . . .  , 6 is 72. We use the DQAGI subroutine in NSWC Library which allows us to 
compute the infinite integrals. We provide a graph showing what a typical integrand in Ey and Fy looks like.
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The intervals are computed as if the distribution is close to normal. In order to evaluate 

each method in terms of coverage error, we need to show it analytically or run some 

Monte Carlo experiment, which has not been done in this paper. We leave this for further 

consideration.

2.6 Conclusion

We have used Ullah’s Lemmas to derive the asymptotic moments of the shrinkage 

estimator with non-random guess and random guess. It has been shown that using a 

consistent estimator for the asymptotic moments, a non-parametric bootstrap pivotal 

statistic can be constructed. In order to illustrate the practical implementation, we have 

applied the result to the OWS estimator to compute the Bootstrap confidence intervals.

Appendix

Proof o f Theorem 2-1 Asymptotic First Moment o f  James-Stein Estimator with Non- 
random Guess
Let f(z) = z  - |i and g(z) s  QJz ’z)z . Let fi(z) and g,(z) be the ith element of f(z) and g (z )  
respectively where f»(z) = eiZ - eip and g i(z) =  (X /z’z)ejZ. Then H j(z) = fj(z) - g,(z).
(1) E(fj(z)) = ejE(z) - ej|A = ejp - eip = 0.
(2) Define g n (z ) =  ej’z  and g 2(z) = X /z’z . Then g;(z) = g ii(z )g 2(z).

a
By using Ullah’s differential operator, d s [ p .+  —  ],

d|X

g„(d) = e,'d = =im + | ;:] - u , + ^ - .

On the other hand, we can show using Ullah’s Lemma2 that
oo

E(g2(z)) = ^T (l ) - 1 J lN 0tr ,/2 exp (-l / 2 | i ’N It|x)dt
o

where (1) N0t = (l+ 2 t)I and IN0tl = (l+ 2 t)k
(2) N„ = 2t/(l+2t)I
(3) T( ) is the gamma function.

= Xr( I)’1 J (1 + 2 t ) _k /2 exp(-(t / 1 + 2 t)p ’|X)dt.
0
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Define W(n) = r(l)’1 J (1 + 2t ) ' k/2 exp(-(t / 1 + 2 t ) ^ ’n )d t.

Therefore we have the following.
E(gi(z)) = E(gi1(z)gr(z))

= gi'W Efgftz))

= [\ii + —  ]Xr(l)-' J ( 1  + 2 t ) - k/2 exp(-(t /  l +  2 t)p.’ji)dt
o

= ^PiW(|i) + X rd ) ' 1 J ( 1  + 2 t ) - k/2 exp(-(t / 1  +  2 t)p ’|X)(—(2 t / 1  +  2 t)m )d t.
0

Hence E(Hi(z)) = -E(gi(z))

= -X|iiW(^) - X r(I ) ’ 1 J (1 + 2t) ' k/2 exp(-(t /1 + 2 t)n ’p.)(-(2t /1  + 2t)*i;)d t. Q.E.D
o

Proof o f Theorem 2-2 Asymptotic Second Moment o f James-Stein Estimator with Non- 
random Guess
Note that H(z)H(z)’ = f(z)f(z)’ - f(z)g(z)’ - g(z)f(z)’ + g(z)g(z)\
(1) E(f(z)f(z)’) = E((z-|D(z-p)0 = Var(z) = I.

Hence ay = 1 if i = j and ay = 0 otherwise.
(2) Note that f(z)g(z)’ = A.(zz’/z’z - pz’/z’z).

Let by be the (i,j)th element of A£(zz’/zz). Then using Lemma 2 
by = XE(zlyz/z’z)

oo

= XT ( i y l J ( 1  + 2t)~m  (tr(I jjNof ' ) + //’ iV2 ,//e x p (-l / 2 //’ N ufi)dt
o

where Not= (l+ 2 t)I
N,t = 2t/(l+2t)I 
N2l = (l/l+2t)2Iy
Iy = zero matrix except (i,j) element being equal to one.

Let cy be the (i,j)th element of aE(|izVzz). Then 
cy = XE(p.iej’z/z’z)

= HiE(X,ej’z/z’z)
= JiiE(gj(z))

oo

= îi{Xp.jW( î) + ^ r ( l ) ' 1 J ( 1  + 2 t ) _ k /2  exp(-(t / 1  + 2 t)n ’n )( - ( 2 t / 1  + 2 t)(a.j)dt}
o

using the result in the proof of Theorem 2-1.
Hence the (i,j) element of E(f(z)g(z)’) is given by by - cy.

(3) By symmetry, the (i,j) element of E(g(z)f(z)’) is given by - Cji.
(4) Let dy be the (i,j)th element of E(g(z)g(z)’). Then 

dy = X2E(zlyZ/(z’z)2)
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90

= A.2r(2 ) ' 1 J tdet(N 0l y kn (tr(IuN 0l_1) + |a.’N 2 ,|i)ex p (-l /2p.’N un)dt using Ullah’s

Lemma 2. Q.E.D

Let f(z) = Mz and g(z) = . Let fj(z) and gj(z) be the ith element of f(z) and g(z)

Proof o f  Theorem 3-1 Asymptotic First Moment o f OWS Estimator
X1M 2z 

_ z M xz _
respectively. Then H i(z) = f|(z) - gi(z).
(1) E(fi(z)) = E(MjZ) = MiE(z) = 0 where Mi is the ith row of M.

(2 )  Define g u (z) = M 2iZ and g 2(z )  s
z. M xz  j

Then & (z) =  g ii(z )g 2(z).

By definition, gu(d) s  M2id = M 2.[p, + —  ] where M2; is the ith row of M2.
d|X

E(g2(z)) = W i y '  J lN 0 l | - | / 2  exp(-1 / 2[l ’N , t p,)dt
o

where (1) Not = I+2tM.
(2) N„ = 2tM.No, " 1

(3) T( ) is the gamma function.

Define W ^i) = r(l)"1 JIN 0t r1/2 e x p ( - l /  2 n ’N Itfl)d t.
0

Therefore E(gi(z)) = E(gil(z)gi2(z))
= gi1(d)E(gi2(z))

= M2 i[ ^ i + ^ - ] a W ( |i ) l ll=0 = 0.

d °°
Note that ^ W 0 0 I M=0 = r ( l ) " 1 J lN 0 , r 1/2 e x p ( - l / 2 n ’N lln )( -N lln)dtl „=o = 0 .

Hence E(H.(z)) = 0. Q.E.D

Proof o f Theorem 3-2 Asymptotic Second Moment o f OWS Estimator 
Note that H(z)H(z)’ = f(z)f(z)’ - f(z)g(z)’ - g(z)f(z)’ + g(z)g(z)\
(1) E ffC z)^)1) = EfMzzMO = MEfzzOM’s  MM’.

Hence a.j = (i,j) element of MM’.

(2) E(f(z)g(z)’) = E(Mz

Let Emn be the (m,n) element of E 

lemmas as follows.

A~M2z Mzz M , zz
E(Mz

_ z M xz _
) = X2E

zM ,z
= A.2ME

z M,z

zz
z  M , Z j

M2.

. Then Emn can be computed using Ullah’s
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Emn =  E ZlmnZ
Z M, Z

where Imn is defined as before.

= r(l)-‘ JIN0t r,/2 (tr(ImnN 0l- ' ) +  p, N 2 tp.)exp(-1 / 2 '̂N „n)dt lM=0.
o

where Not = I+2 tMi, N |t = 2tMiNot’', and N2 t = Nor’lmn Not’1.
oo

= r( l) -1JlN0tr ,/2tr(ImnN0l-,)dt.
0

2k 2 k
Hence, by = a X X M imE mnM 2jn •

m=l n=l

(3) By symmetry, cy = ty.
4 >M2z A,M2z

_ z M xz _ _ z M{z _
(4) E(g(z)g(z)’) = E(

Let Fmn be the (m,n) element of E 

Ullah’s lemmas as follows.

) = X22E
M 2zz M 2 

( z 'M .z ) 2
= ?i2 2M2E

zz

(z M,z) _
M2.

z z

_(z M ,z) _
Then Emn can be computed using

Fmn =  E ZlmnZ 
( z  M . z ) 2

where Imn is defined as before.

= r(2)_l j t lN 0l r l/2 (tr(ImnN 0t-1) + |i  N 2 l|l)exp(—1/ 2p. N|,p.)dt lM=0. 
o

where Not= I+2tMi, Nu = 2tMiNot"1, and N2t = No^’lmn Not'1.
oo

=  r(2)-1JtlN0ir 1/2tr(IijN0,-1)dt.
0

2k 2k
Hence,dy = ?t2 2 X X M 2 inFmnM 2jn. Q.E.D

m=l n=l
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Table 2.5.1 Regression Result

Estimator Variable Coefficient Std. Error Coeff/Std.

OLS X l 0.077618 0.172397 0.450227

*2 -0.005561 0.169351 -0.032840

X3 0.015524 0.190734 0.081391

LAD X | -0.001885 0.221519 -0.008510

X2 0.050000 0.217604 0.229775

X3 0.045658 0.245080 0.186299

OWS X | 0.072559 0.171099 0.424076

X3 -0.002030 0.168950 -0.011990

X3 0.017442 0.189935 0.091832
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Table 2.5.2 Bootstrap 95% Confidence Intervals

Method Confidence 

Lower Bound

Interval 

Upper Bound

Length Shape

Percentile-t Xl -0.24321 0.434032 0.677245 1.144725

x 2 -0.33606 0.296353 0.632408 0.893269

x 3 -0.34916 0.406528 0.755685 1.061344

Naive Xl -0.25017 0.404900 0.655070 0

Percentile x 2 -0.30556 0.327596 0.633151 0

X3 -0.34828 0.358264 0.706539 0

Percentile Xl -0.25978 0.395289 0.655070 0.971079

X2 -0.33165 0.301504 0.633151 0.920841

X3 -0.32338 0.383159 0.706539 1.073044

Normal Xl -0.26280 0.407913 0.670709 1

Approximation x2 -0.33317 0.329116 0.662283 1

X3 -0.35483 0.389714 0.744544 1

Let 'cl' be the lower bound and 'cu' be the upper bound o f a confidence interval.

Then 'Length' and 'Shape' are defined as follows.

(1) Length =  cu - cl.

(2) Shape = (cu - b)/(b - cl) where b is the JSLAD estimate computed from the original data set. 

Shape measures how asymmetric the bootstrap confidence interval is around its center (b). If 

Shape > 1, then (cu - b) > (b - cl). If Shape < 1, then (cu - b) < (b - cl).
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Figure 2.5.1 Histogram of Standardized Bootstrap Estimates for Pi
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Figure 2.5.2 Histogram of Standardized Bootstrap Estimates for P2

Histogram  of stand ard ized  bootstrap  e s t im a t e s  for b e t a 2

0.8

0.6

0.4

0.2

505
K ernel D ensity  (solid) S tandard  Normal (d otted)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

R
es

am
pl

in
g 

: 5
00

0

76

Figure 2.5.3 Histogram of Standardized Bootstrap Estimates for p2
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Figure 2.5.4 Integrands in E(m =l,n=l) and F(m=l,n=l)

I n t e g r a n d  in " E m n ” with m = 1 a n d  n = 1
0.8

0.6

0 .4

0 .2

150 2 0 00 50 100
I n t e g r a n d  in " F m n "  with m = 1 a n d  n = 1

0.8

0 .6

0 .4

0.2

50 150 2000 100

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

77

Figure 2.5.5 Integrands in E(m=l,n=2) and F(m=l,n=2)
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Application of Shrinkage LAD Estimation to the Treynor Black Model
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3.1 Introduction
We apply various shrinkage estimators developed in the first chapter to the 

construction of the optimal portfolio as proposed by Treynor and Black (1973) using 

alpha and beta forecast data obtained from a financial institution. This paper also utilizes 

an extension of the Treynor-Black model which incorporates off-diagonal terms in the 

covariance matrix of abnormal returns.

Treynor-Black portfolios are constructed in two stages. First, an active portfolio is 

constructed from the securities under consideration. The active portfolio is on the 

efficient frontier based on the abnormal returns of the covered securities. In the second 

stage, the final, optimized portfolio, which we call the Treynor-Black Portfolio (TBP), is 

constructed from the Active Portfolio (AP) and the market index (M). The AP is 

optimally mixed with the market index to improve diversification so as to maximize the 

Sharpe measure of the TBP. Treynor-Black assume the validity of the Sharpe’s Diagonal 

Model in which securities are correlated only through a common market factor. This is 

unrealistic, and we apply Theorem 2 in Roll (1977) to derive explicit formulas that 

delivers the TBP with a general covariance model.

The Treynor-Black model appears to have had little impact despite some early 

encouraging papers (Ambachtsheer (1974, 1977), Ambachtsheer and Farrell (1979), 

Black (1973), Ferguson (1975), Hodges and Brealey (1973), Kane and Marcus (1986)). 

Although theoretically compelling, the model has not been widely adopted by 

professional managers. It appears that security analysts are reluctant to put themselves to 

the quantitative test required by the TBP model. On the other hand, many academicians 

believe that the forecasting ability of most analysts may be below the threshold needed to 

make the model useful. This paper aims at identifying and lowering this threshold by 

using several promising statistical methods.

The performance of the TBP model depends critically on 1) the predictive ability 

contained in the abnormal return forecasts, and 2 ) application of the statistical properties 

of the forecasts to the portfolio re-balancing process. It has been intermittently reported 

in the literature (See Ambachtsheer(1974, 1979) and Black (1973)) that some
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organizations possess a small yet significant forecasting power, but that they were lacking 

the efficient technology to use it systematically. We introduce various ways o f shrinking 

a robust estimator toward a data-dependent point and we use these methods to translate 

the predictive power into the portfolio decision process. Given that abnormal returns tend 

to exhibit fat-tailed distribution, we choose the Least Absolute Deviation (LAD) 

estimator as the base estimator.

The quality of the estimates of market betas determines the accuracy of the estimates 

of ex-post abnormal returns, which, in turn, enables us to measure the bias and precision 

of alpha forecasts. Because many stocks are traded infrequently, we use Dimson (1979)’s 

“Aggregate Coefficients” (AC) method to estimate market beta. The analysis o f the alpha 

forecast database suggests ( 1 ) the correlation between alpha forecasts and realizations is 

as low as 0.04. (2) the alpha forecasts are biased and forecast errors are asymmetric. It 

appears that the analyst predictive ability declines over the sample period. Nevertheless, 

the application of shrinkage LAD estimation to the full-covariance TBP results in 

superior performance.

Out-of-sample experiments show that a $1 invested in a properly managed TBP 

Covariance Model based on forecast database would yield $1,810 with Sharpe Ratio 

being 1.340 over 3 years. On the other hand, if you invest $1 in the S&P500 index over 

the same 3 years, the final wealth is $1,259 and the Sharpe Ratio is 0.909. This result 

shows that a large potential improvement can be obtained, and this can be done without 

requiring a high threshold for forecasting ability. Nevertheless, the TBP turns out to be 

unstable in that the weight given to the AP can be large and volatile; as a result the TBP 

can be “concentrated” rather than diversified. We have also found that managing the 

market risk (market beta) properly is an important ingredient to obtaining a better TBP. 

The TBP based on the OLS estimator is always dominated by the TBP based on the LAD 

and shrinkage LAD estimators.

The paper is organized as follows. First, we restate briefly various methods of 

shrinking the LAD estimator toward a data-dependent point. A general and detail 

discussion can be found in the first chapter. Second, we introduce the Treynor-Black
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Portfolio Model and derive a closed form solution for a general covariance model using 

efficient frontier mathematics. Third, we apply shrinkage LAD estimators to construction 

of the TBP covariance model using actual alpha and beta forecast data.

3.2 Introduction of Shrinkage LAD Estimator

The James-Stein shrinkage estimator can be obtained by shrinking a base estimator 

(e.g. OLS estimator) toward a fixed point which is usually set to zero. Basically, the risk 

improvement can be explained by a simple variance-bias trade-off. Shrinking a base 

estimator makes the variance smaller and the bias greater, which leads to smaller risk 

under the choice of an optimal degree of shrinkage. One of the problems of the JS 

estimator is that for large samples, there is no advantage to using the JS estimator as the 

risk of the JS estimator converges to the risk of the base estimator. This can be 

understood in terms of a natural relationship between JS-type estimators and Bayesian 

estimators. The fixed point toward which the base estimator is shrunk can be often 

viewed as a prior or guess about the true parameter. As the sample size gets larger, the 

influence of the prior tends to vanish and the base estimator becomes more reliable. As a 

result, there is less room for the shrinkage technique to play a role, explaining why there 

is no asymptotic improvement. One way of overcoming this problem is to shrink the base 

estimator toward a data-dependent point.

Consider yt = x, p° + e, t = 1, 2 , . . . ,  n where (3° e  Rk and et is assumed to be identical 

and independent. We define X" = [xi, X2 , . . ., xn]’. Let b„ be an estimator for p°. A 

function L(bn,P°) is called the loss function if and only if (1) L(bn,p°) > 0 for all b„ and all 

P° and (2) L(bn,p°) = 0 if and only if bn = P°. The expectation of the loss function, 

E(L(b„,p0)) is called the risk, denoted by R(bn,p°). An example of a loss function is the 

quadratic loss, L(b„,p°) = (bn-P°)'Qn(b-p0) where Qn is a symmetric and positive definite 

matrix. Let {bn} be a sequence of estimators of p°and let {L(bn,p0)} be a sequence of 

loss values. Suppose L(bn,P°) converges to an integrable random variable ¥  in 

distribution. The asymptotic risk of {bn} for {L(bn,p0)} is then defined by
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AR({b„}, P°) = EOF).

Let gn be a data-dependent point, which satisfies the following joint normality condition.

'nU2(bn ~ P ° )
- 2 - »

' u ;
~ N

/ 1
X

01

^ k x k  ^ k x k
\

n m (gn - j 8 ° ) . 1 . kxk Bkxk . /

where A is the asymptotic covariance matrix for the base estimator and the guess 

estimator. We now give a formal definition of the James-Stein Combination Estimator 

(JSC).

Definition 2-1 James-Stein Combination Estimator

The combination of two estimators using the James-Stein rule,
c

5xJS(b n,gn) = 1 vi f- t  f t  \  I (bn ’  Sn) +  gn
( b n ~  g n )  Q n ( b n ~  g n )  J

where X  is a constant, is called the James-Stein Combination Estimator (JSC).

The we can show the asymptotic risk of the JSC estimator is smaller than the asymptotic 

risk of the base estimator as long as some relative non-efficiency conditions1. Note that 

the shrinkage toward a data-dependent point is equivalent to combining the base 

estimator and the data-dependent point using a random weight determined by James-Stein 

rule. We can further extend this approach by developing the Optimal Weighting Scheme 

(OWS) which includes random weight as well as non-random weight as special cases.

Definition 2-2 Optimal Weighting Scheme Estimator (OWS)

The combination of two estimators defined by

5xOW(b „,g n ) =
X  2  j L

f h  a  v n  ( h  X I (bn - gn) +  gn 
( b n ~ 8 n )  Q n ( b n - 8 n ) J

where X  = [A,j A.2] \  is called the Optimal Weighting Scheme Estimator (OWS).

1 For a precise statement of this condition, see the first chapter. This condition requires that the base should 
not be asymptotically efficient.
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The following theorem provides the optimal combination weight for the OWS estimator 

and some conditions under which the asymptotic risk of the OWS estimator is smaller 

than the asymptotic risk of the base estimator. See Chapter 1 for the proof.

Theorem 2-1 Under the Joint Normality condition and some regularity condtions,

(1) AR({8 ^ow(bn,gn)},p0) is strictly convex in X.

(2) Let X* e  argmin AR( {SxNR(bn,gn) } ,P°). Then 

Xi* = (aeo-iy^Pco-v) and X2* = (aco-iy^av-P).

(3) AR( {5x*ow(bn,gn) } ,p°) = (cud-1 )'2 [-a p V -(2 a p v -a 2v2+p2 )ctH-(av2 -2pv)] + k .

(4) AR({8 x*ow(b„,gn)},p°) < AR({bn},P°) where the equality holds only when P = 0 

and v = 0 .

where

<x = E [ ( £ / , - U J Q i U i  ~ U 2)], P = E [f/I' 0 (C/ 1 - U 2)].

U,'Q(VX- U 2) /A c 1
S U X- U 2)'Q(UX- U 2)_

9 © “ C)
_(ut - u 2y Q ( u t - u 2)

The method to estimate a ,  p , v and go consistently is discussed in detail in the first 

chapter. In order to compute the combination of the two estimator, we need to estimate 

the error density evaluated at zero and the covariance matrix between two estimators. We 

estimate the density using a Kernel method with Gaussian Kernel. See the Appendix for 

detail discussion. Since both estimators are in the RCASOI (Regular Consistent 

Asymptotically Second Order Indexed) class, we can exploit the score and Hessian 

representations of both estimators to compute the covariance matrix. See Bates and 

White (1993) for a detail discussion

It is well known that even though the OLS estimator is BLUE, it is sensitive to outliers 

and is not stable in that a small change in the data can cause a big change in the 

estimation result. Considering that the ex-post abnormal return process is the dependent 

variable in our application and that this has a fat-tailed distribution, we proceed using the 

Least Absolute Deviations (LAD) estimator. This estimator has the attractive property
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that it is robust to the outliers in the dependent variable. If we choose the LAD and OLS 

estimators to shrink toward each other, the theory developed so far give the following 3 

optimal shrinkage LAD estimators.
b NRLAD =  ( 1 _W j) ( b LAD _ b LS) +  feLS

b JSLAD _
r ^
1-  — ------------------------------------

- b ^ y Q i b ™ - b * ) ;
(bLAD.b^ )  + b^

.O W LA D  _  i _  y ________________ C l______________  f b LAD _ b LSx b LS
~ { l +  { b ^  - b ^ y Q i b ^  - „ ‘s ) r  }

where wi = p/a, w2 = v/to, Xi = (ato-lj'^pco-v) and X2 = (aca-iy^av-P). The JSLAD is 

better than the LAD estimator and the NRLAD and OWLAD are better than both the 

LAD estimator and the OLS estimator in terms of asymptotic risk when the relative non­

efficiency condition and some regularity conditions are satified.

3.3 Construction of the Treynor-Black Portfolio

In this section, we explain the original Treynor-Black diagonal model and make an 

extension of the model which incorporates off-diagonal terms in the covariance matrix of 

abnormal returns. The Treynor-Black model starts with the single-index model,

(1) I^i =  Tf +  p jO ^m  -  Tf) + Zj i s  1,2, . . . , N .

where

rs; = return on the ith security, 

rf = riskless rate of return,

Pi = market sensitivity of the ith security, 

rsm= return on the market,

Zi = abnormal return on the ith security,

N = number of securities.

Each return is decomposed into three pieces: a riskless return component [rf], a systematic 

(normal) return component [PKr'm - rf)] and an independent (abnormal) return component
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[zj. Denote the excess return on the ith security and the excess return on the market by r; 

and rM respectively: n = rV  rf and rm = T*m - Vf. Then

(2) rj = pjrm + Zj.

Treynor and Black impose the following error structure on the abnormal returns Z\.

TBA 1. E(Zj) =  otj

T B A 3 .  Cov(Zi,rm) =  0.

In addition to these error structure assumptions, Treynor and Black assume that there are 

no restrictions on borrowing and short sales and that there are no taxes. The Oi can be 

interpreted as a measure of how far the excess return on the ith security is away from its 

'equilibrium value'. If otj = 0 for all i, then the market is in equilibrium. By allowing aj to 

be non-zero, the model provides a way of forming an optimal portfolio by exploiting the 

security analyst's findings about the ctj. The second assumption means that the only 

source of the co-movement between two excess returns is the common market return 

component. We think that this assumption may be unrealistic2  and we drop it. We 

therefore impose.

Assumption 1 E(z;) = aj.

Assumption 2 C ov(zi,rm) = 0.

We define £j = Zi - E(zill). By using the abnormal return decomposition, the basic model 

(2 ) can be rewritten as follows.

(3) n = a* +pirm + £i 

where E(e) = 0 and Var(s) = Q with (i,j)th element = cry.

For the moment, we assume an ideal situation where we know all the true values {at, 

cry, pi, pm, am : i, j = 1, 2 , . . . ,  M}, where pm = E (rJ , a m = Var(rm) and M <N . 3 In order 

to make notation simple, we assume that M = N. See Bodie, Kane and Marcus (1996) for 

an illustrative numerical and graphical example for this two step approach.

2 See Ferguson (1975) pp 72.

a , 2 if i = j 
0  otherwise.
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Step One: Active Portfolio Construction 
Definition 3-1 Active Efficient Frontier (AEF)

The efficient frontier traced by solving the following optimization programming based on 

the abnormal returns is called the 'Active Efficient Frontier’.

Min a(h ) 2 = h'Gh
h

subject to h 'a  = ra and h'l = 1 

where h is the N xl vector of portfolio weights, a  is the N x l vector with elements otj, and 

ra is a pre-specified abnormal return level.

Definition 3-2 Active Sharpe Ratio (ASR)

h 'a
Let h be on the AEF. Then . — is called the 'Active Sharpe Ratio’.

Jh'Clh

Definition 3-3 Active Portfolio (AP) Weight

The portfolio weight derived by the following ASR maximization problem is called the 

’Active Portfolio Weight’.

h* cc
h* e arg max — subject to h’t = 1 . 

h \h 'C lh

Theorem 3-1 Given the true values {a,G}, the AP weight (h*) is given by 

h* = [a ’Q '1i] '1f i '1a.

Proof: See Appendix 1.

3 In order to make the 'Active Portfolio' defined later, we do not have to investigate all securities in the 
market.
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Note that if  all off-diagonal terms are zero, then the AP weight (h ) simplifies to the 

following .4

hi =

-1
SL

The return on the AP is
N

Ta = X ^i=l

=  + X * '*  •i=l i=l i=l
N  N  N

Define a A = » Pa = X ^* 'A  311(1 eA s  X ^ * ,e< • Then rA = a A + pArm + eA. We
i = i  i = i  i= i

can compute the expectation and variance of the AP using Assumption 1 and Assumption 

2  as follows. 5

pA a  E(rA) = a A + pApm. 

cta 2 = Var(rA) = pA2c m2  + a(eA) 2 

where a(eA ) 2  = h*'Qh*.

Definition 3-4 Appraisal Ratio (AR)

The quantity a 'Q _1a  is called the 'Appraisal Ratio'.

The AR is a distance of the mean vector of the abnormal returns from the origin (the 

market equilibrium) weighted by the inverse of the variance-covariance matrix. It 

measures how far we deviate from the market equilibrium or how much of a contribution

N
1 If Q is diagonal, then b = V  —i- and Q' a  =

ST *M 2 »*•*» —2

5 Note that C ov (eA ,r,„ ) = E[sA(rm-|am)] = £/i*£:(£frm) = 0
i-l

because Cov(Ei,rm) = 0 by assumption 2.
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security analysis can make. As the following corollary shows, the AR is an evaluation 

measure of the AP.

Corollary 3-2 The square of the maximized ASR is equal to the AR. In other words, 1

2

= a 'fy 'a .h' a
J h m'O h \

If all off-diagonal terms are zero, then the maximized ASR simplifies to 7

lri'a T  _

J h m'Oh*\ ~ w ^ i 2 ’

Step Two: TB-Portfolio Construction
We then mix the AP with a market portfolio. Define rp(w) to be the mixture portfolio 

with weight w: rp(w) = wrA + (l-w)rm. Accordingly we can calculate the mean and 

variance8 of the mixture portfolio as functions of w. 

f-tp(w) a  E(rp(w)) = wpA + (l-w)|im 

CTp(w) 2  a  Var(rp(w)) = w 2cta 2 + (l-w)2o m 2  + 2w (l-w )aAm

= w2(pAOm2 + o ( 8 a ) 2)  + (l-w)2a m 2  + 2 w (l-w )pAa m2.

6 Note that (1) h*'a =  [a’O ' i ] - W a  and (2) h*'Qh* = [a'Q 'il 'a'Q 'Ola'Q 'il ^  'a  = [a W 'i^ aW 'a .

Therefore, h*'a =  a ' Q ' a .

h*'a
Jh*'Qh*

A  i  a i2 i  V ’  a i ■>2 (£ h * j0!i)2 (£ -V )2 ( £ - r ) 2 " a 2
= i-l_______  = i.l Oj j.| CTj = > _——.

i.l i-l i-l »i

8 Cov(rA,rm) = EtfrA-IIyOfrm-Hn,)]
= E[(aA+pArm+eA-aA-PAM ( fm-Hm)]
~ E [pA(rm-|in,) ] + E [sA(rm-tim)]
= PaEO^-jO 2 (E(eArm) = E(eA) = 0 by Assumption 1, 2) 
= PAam2
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Definition 3-5 Treynor-Black Portfolio (TBP) 9 Weight

The portfolio weight derived by maximizing the following Sharpe Ratio is called the 

Treynor-Black Portfolio Weight.

M-p ( w )
w* e arg max Sp(w) = — -—- .

p a p(w)

Theorem 3-3 Given the true values {a,Q ,p,pm,CTm}, the TBP weight (w*) is given by

* ___________________________ Ojgl_______________________

W " (1 - P A)a Ao * + n mh*' Qh*

Proof: See Appendix 1.

Note that the TBP weight (w*) can be simplified to

alpha o f the AP
* w 0 h*'£lh* residual variance

w = ---- -— -—■—  where w0 = —---------= ---------- r—-----------l + ( l - P A)w 0 0 market mean
a l  market var iancetn

The TBP return is given by

rp(w*) = w*rA* + (l-w)*rm

= S w X ' i + ( 1- w*)r.
M

N

using the definition of rA* = ^ h * ^  . Hence we have N +l securities including the market
i= l

index. The optimal weight to the ith security is w*hj* and the optimal weight to the 

market index is (1-w*). The square of the maximized Sharpe Ratio can be decomposed 

into the square o f the market portfolio’s Sharpe Ratio and the AR, i.e.

MpCw*)-12

l<Tp ( w *)

9 Usually a tangential portfolio is computed with respect to the riskless rate o f return. Since we have already 
subtracted the riskless rate of return from returns, the tangential portfolio should be computed with respect 
to the origin.
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This clearly shows that the market Sharpe Ratio is the contribution o f a market index and 

that the AR is the contribution of the security analysis to the TBP.

3 .4  F o recast D a ta  D escrip tion

We use alpha and beta forecasts provided by a financial investment Arm, Advanced 

Investment Technology (ATT). These are 12 week (approximately 1 quarter) ahead 

forecasts. The firm generates alpha and beta forecasts every month.10 The data set spans 

3 years from December 1992 through December 1995, which gives us 37 observations in 

the time dimension. December 31, 1992 the Arm generated alpha and beta forecasts for 

711 securities. Each month it has added several new securities into the forecast data base, 

ending up with 771 securities on December 29,1995.

Let { (a IT,# r ) I i = 1,2,. . . , N, x = December 31, 1992, January 29, 1993, 

November 24, 1995, December 29, 1995} represent the forecast data set. The definition
A

of a ,(T=De«m6er3i.i992)is that it is the forecast of the ith security's abnormal return over the 

time period between December 31, 1992 and March 26, 1993. We call t  the 'Date
A

Forecasts Made (DFM)’. Likewise, ^ i(T=Decem6er31 1992) is the forecast of the ith security's

market beta 12 weeks later.11

There are 37 dates when the alpha and beta forecasts were made, which will be 

indexed by x e  DFM = {xj : i = 1, 2 ,.  . ., 36, 37}, where xi = December 31, 1992, t2 = 

January 29, 1993, . . ., X37 = December 29, 1995. See Table 3.4.1 for the list of exact 

dates o f the forecasts. Also, we define the Prediction Index Set S = {  1, 2 ,. . .  36, 37}.

After deleting any security having at least one missing value, we have alpha and beta 

forecasts for 646 securities over the sample period. Figure 3.4.1 and Figure 3.4.2 are

10 Roughly 6-8 years of history data (including both technical and fundamental information) are used to 
generate alpha forecasts.
11 The firm generates alpha and beta forecasts the last Friday every month. There are two exceptions:
March 1993 forecasts and June 1994 forecasts have been made on December 31, 1992 (Thursday) and 
March 31, 1994 (Thursday) respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

91

distributions of average alpha and beta forecasts over 646 securities. The plots are drawn 

by taking the average over the sampling period for each security and then forming 

histograms. The distribution of alpha forecasts is skewed to the right. The distribution of 

beta forecasts is centered around one as expected, but has a local maximum in the 

downside tail. In many cases, financial firms produce alpha forecasts in the form of a 

ranking variable. In such cases, the conversion of the ranking variable to some 

comparably scaled variable can be done using the 'IC (Information Correlation) 

Adjustment' proposed by Ambachtsheer (1977). In our case, the alpha forecast is not 

solely a ranking variable, even though it takes only integer values between -12 and 14 

which is due to rounding made by the institution, i.e. the integer values are point forecasts 

of returns. Table 3.4.2 gives summary statistics for the location and dispersion of the 

average alpha and beta distributions.

3.5 Stratified Random Sampling

In this work, we confine our study to a smaller subset of the full 646 stock population 

because we want to reduce the computational burden12 and increase the precision of the 

residual covariance matrix. Accordingly, we have chosen to work with a subset of 105 

randomly selected stocks. We explain how to select 105 stocks in the following.

Rosenberg, Reid, and Lanstein (1985) and Fama and French (1992) provide empirical 

evidence that the book-to-market equity (BE/ME) ratio and market capitalization have 

significant explanatory power for average stock returns.13 Accordingly, we want to 

preserve the distribution of the BE/ME ratio and capitalization distribution during the 

sampling process.

12 Chames et al. (1954) showed that the LAD estimator can be obtained by simplex linear programming 
methods. This method is not efficient, in that the parameter space grows along with the number of 
observations and as a result, it requires a long search time. Barrodale and Roberts (1974) proposed a 
modified version of the simplex algorithm referred as the BR-L| Algorithm. This algorithm is much more 
efficient than the simplex method and greatly reduces the computation time. Nevertheless, even using the 
BR-Lj Algorithm, it takes considerable computation time to analyze all 646 stocks.
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For this, we have obtained the following annual data over the 3 year sample periods 

from the COMPUSTAT database: book value (common equity, COMPUSTAT item 

60,unit = millions of dollars), common shares outstanding (COMPUSTAT item 25, unit = 

millions) and closing price (COMPUSTAT item 24,unit = dollars and cents). Since there 

are 41 missing observations for book value in 1995 and 45 missing observations for 

common shares outstanding in 1995, we have used only the middle year (1994) data to 

generate the following variables14.

(1) Size = Common Shares Outstanding x Closing Price.

(2) BE/ME = Book Value/Size.

First we divide the market capitalization distribution of the population into 7 classes such 

that each contains the same number of stocks. Then we divide the BE/ME population 

distribution in the same manner. Thus the population is divided into 49 strata and each 

strata has approximately 13 observations. Define the following variables.

N = total number of stocks in population (646).

Nj = total number of stocks in ith stratum (about 13).

n = desired sample size (105).

nj = number of stocks drawn from ith stratum.

We choose nj such that n*/n = Nj/N and then draw m (typically 2 or 3) samples from the ith 

stratum randomly. This procedure gives us a stratified random sample of 105 

observations. We will analyze this sample in the subsequent sections. Figure 3.5.1 and 

Figure 3.5.2 show population and sample histogram for capitalization as well as BE/ME 

ratio.

3.6 Estimation of Market Beta and Ex-post Abnormal Returns

13 Average stock returns in the United States are negatively related to both market to book value and market 
capitalization. Fama & French argue that these might serve as proxies for a portion of risk premium which 
is not captured by market beta.
14 The Sampling distribution of size and BE/ME in 1994 is almost identical to the sampling distribution of 
size and BE/ME averaged over 1993 and 1994.
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When we are given alpha forecasts, we have two choices of how to use them in the TB 

analysis. One simple way is to use the alpha forecasts directly, without any modification, 

so that

E(z,IIt) = a , .

Nevertheless, we typically do not want to use alpha forecasts in this way because we are 

not certain of the quality predictive power of such alpha forecasts. Instead, we want to 

make an appropriate transformation of the alpha forecasts, using information available up 

to the time at which the forecast is made. In this case, we have

E(ztIIt) = f(a(,It)

where the function f(.) embodies our confidence in the forecasts and discounts the 

forecasts accordingly. We call f(.) the ‘discount function’. If we have enough past data 

on ex-post abnormal return (zt), then we can use the historical correlation between ex­

post abnormal returns and alpha forecasts to form the discount function for alpha
A

forecasts. For example, if we regress zt on a constant and a t , then the discount function 

is
A A

f ( a t ,It) = a + b a ,  

a
where (1) b = p —-  

<*a

(2) a = E(zt) - bE( a , )
A

(3 )p  = Cor(zt, a ,) .

In order to estimate the correlation, we need to know the actual abnormal return 

process {zt}, which requires us to know excess returns (ru), market excess return (rmt) and 

true market beta (Pi); za = ru - Pirmt. But it is not possible to obtain historical values for 

abnormal returns because we do not know the true market beta. Therefore the quality of 

estimated ex-post abnormal returns critically depends on the quality of the estimated
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market beta. Let be an estimate o f the market beta for the ith security. Then the

15 A Aestimated ex-post abnormal return is zit = n, - p ,  rmt.

One distinguishing characteristic o f the alpha forecasts we have obtained is that the 

forecasting horizon is about 3 months, but new forecasts arrive every month. Therefore, 

we can investigate such interesting issues as how to update old forecasts when new 

forecast information arrives within the old forecast’s horizon. However, this kind of 

overlapping structure introduces certain serial correlation problems and makes out-of- 

sample portfolio analysis and interpretation much more complicated. W e leave the topic 

of updating forecasts for further research and seek to make our analysis as simple as 

possible. Accordingly we divide the alpha forecasts by 3 and treat them as one month 

abnormal return forecasts. We also assume that the imaginary portfolio manager acts as 

if the forecasts are made on the last trading day of each month, and he makes all portfolio 

decisions and buy and sell executions on the first trading day of the next month. 

Therefore, whenever we mention “Date Forecasts Made”, it means the last trading day of 

the month. Table 3.4.1 shows that the number of days between actual DFM and the buy 

and sell execution date is very small, which justifies our simplifying assumption.

One final point should be emphasized. Using our simple transformation of the alpha 

forecasts means that we are using only part of the information in the alpha forecasts. If 

this partial information is useful in TB portfolio analysis, it is then plausible to make 

additional improvements using the full information in the alpha forecasts.

IS We have errors in variable problem, but in the dependent variable, which is easier to handle than the 
errors in independent variable. Note that 

z i = rit - rmt « pirmt + Zt - rmt 

S z, + Tit where n, = (Pi - , )rmt.
Assume that the model 

zt= a  + b o , + v t
satisfies relevant classical regression assumptions. Since we observe only z , ,  the regression we run is

z, = a + b «  , + v , 
which means

z,=  a + b a  , + v 't 

where v \  = vt - ti,. We assume that c o v (a , ,  T|i) = 0.
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(1) Data

We have obtained daily closing prices (pit) for the 105 securities, the S&P500 index 

(pmt) and annualized US treasury Bills - 3 month (rtf) from the DATASTREAM database. 

The sample period covers 1/1/90 through 3/31/96 which gives us daily 1630 observations 

in the time dimension. We transform daily prices into effective daily holding period 

returns as

rit = r*t -  r /  x  (1 / 260)

rmt = r m ~  rt X 0  /  260 )

where

(D , = Piu+n p_“ xlQ0 
Pu

(2) C  = — —  x 100.
Pm,

We add daily returns in the month to obtain monthly returns which we will denote as
n

mn, =
*=t+i

n

mr = > r’ml £ j ' m k  
k=t+1

where n is the number of days in that month.16

(2) Beta Estimation

Estimating market beta correctly is critical to the TB portfolio analysis for the 

following two reasons. Firstly, better beta estimates lead to better ex-post abnormal 

returns, which enables us to correctly measure the predictive ability of the forecasts. 

Secondly, as seen in the closed form solution for the TBP weight, the estimated market 

beta or beta forecast has a direct impact on the TBP weight. One simple way of

16 Since daily returns are discretely compounded returns, the exact monthly return is 11(1+r,) -1 . It can be 
shown by Taylor expansion that Il(l+rJ - 1 *  Ert.
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estimating market beta is to use the beta forecasts we have obtained from the financial 

institution (ATT); another is to use the OLS regression of excess return on a constant and 

excess market return. Figure 3.6.1 shows the distribution of beta forecasts.17 However, 

the OLS beta estimates are not satisfactory when securities are traded infrequently 

because beta estimates are biased downward.18 Figure 3.6.2 shows the distribution of the 

OLS beta estimates for daily returns. The mean is smaller than one and the distribution is 

skewed to the right indicating that the OLS beta estimates are possibly biased downward.

Dimson ( 1979) proposes a procedure called the "Aggregate Coefficients (AC)" 

method to estimate the market beta when securities are traded infrequently. The AC 

method uses lagged, contemporary, and leading market return as independent variables in 

the beta equation as follows:
n

Tit= 3i + rmt+k +  sit t = 1, , . . ., T.
k = -n

The beta estimate (bjT) is then defined as the sum of all coefficients.
n

bix= .
k = -n

Dimson shows that the AC method corrects the downward bias problem. The intuition is 

that lagged and leading market returns capture the serial correlation induced by infrequent 

trading. However there is no obvious optimal rale for selecting the number of lags and 

leads (n). It is plausible that if the correct number of lags and leads is selected, the 

regression of the out-of-sample residual19 on a constant and excess market return should 

have zero slope coefficient. Table 3.6.1 shows the regression result for different number 

of lags and leads up to S. Only when the number of lags and leads equal 0 or 1, we fail to 

reject the hypothesis that this slope parameter is equal to zero. Once the number of lags 

and leads is greater than 1, the estimated beta is inclined to be biased upward. We choose

17 We take time average for each 105 stocks and use the 105 time averages to draw a histogram. Then the 
histogram is smoothed by using Gaussian Kernel.
18 Under infrequent trading, current security price tends to reflect earlier prices which introduces positive 
serial correlation into its return and the market index. Positive serial correlation in the market index causes 
estimate of both its variance and covariance with individual stock return to be biased downward. In 
general, the downward bias in covariance estimate is greater, which means that beta estimate is biased 
downward.
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the number of lags and leads to be one even though we fail to reject the null when n = 0 

as well as n= l, because our prior is that when n = 0, we still have the infrequent trading 

problem. Table 3.6.1 also shows the grand mean of the estimated beta for each n where 

the grand mean is increasing with the number of lags and leads. The AC method shifts 

the distribution of beta estimates upward, possibly correcting the downward bias problem 

(see Figure 3.6.2).

Vasicek (1973) emphasizes the importance of using prior information when estimating 

market beta, and proposes a Bayesian type estimation method which is

bs = wb + (l-w)b', w -  , /v " +TJ/v j •

where b = estimated market beta,

Vb2 = estimate of variance of b,

b' = mean of prior distribution of market beta,

vb2 = variance of prior distribution o f market beta.

This method shrinks the sample estimate, b, toward the mean of the prior distribution. 

The degree of shrinkage depends on the variance of both the sample estimator and the 

prior distribution. For example, large vb2 leads to small w. This estimator requires us to 

specify the mean as well as the variance of the prior distribution. As Vasicek (1973) 

suggests, we can use cross-sectional information (mean and variance) to choose the mean 

and variance of the prior distribution. Our view is that this shrinkage method is not a 

substitute for the AC method, but a complementary method. Thus once we obtain an 

unbiased beta estimate using the AC method, then we apply the shrinkage method to the 

AC beta estimates. Figure 3.6.2 shows the distribution of beta estimates based on 

Vasicek’s method applied to AC beta. First of all, we notice that all extreme values 

(maximum as well as minimum) are shrunk substantially toward the cross section mean. 

Vasicek’s method shrinks the tail of the distribution and leaves the central part almost 

unchanged.

19 See Appendix 2 for a detailed procedure to select the number of lags and leads.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

98

On the other hand, a modified James-Stein shrinkage method shrinks the central part 

of distribution and leaves the tail part unchanged. This estimator takes the following 

form.

h
bs = w*b + (l-w)*g, w = 1 —

(b — g) Var(b)-1 (b -  g) J 

where g is the mean of prior distribution. Note that (b-g)Var(b)1(b-g) is an F-statistic 

with degrees of freedom (n-1,1) or approximately a %2-statistic with one degree of

h n+
freedom for the implicit hypothesis, Ho: b = g. We can write the weight as

' - F

When F is large (that is, we are likely to reject the implicit null hypothesis), w is large (or 

close to one), which means that we do not shrink. Here we do not have to specify the 

variance of the prior distribution. Instead, the shrinkage factor (h) needs to be specified 

because the number of regressors is 2. If we set h = 1 as in Wonnocott (1981), then 

P[F<h] = 0.6827 which is a big loss of continuity. We choose h = 0.4549 which make 

P[F<h] equal to 0.5. (See Table 3.6.2 for the relation between h and P[F<h]) Figure 

3.6.2 shows the distribution of beta estimates based on the JS technique combined with 

the AC method. As expected, this method shrinks the central part of the distribution and 

the tail part is not changed.

(3) Ex-post Abnormal Return Estimation

Given five methods (See Table 3.6.3 for the list of five methods) available for us to 

estimate the market beta, we estimate ex-post abnormal returns as follows. For each time 

x e  DFM, let bi T be one of 5 market beta estimates from the above regression. By
A A

defining z i T = mri T - bi T rarm T, we can generate {z \ T: i e S, x e  DFM }, which we call "ex­

post abnormal returns". These are monthly abnormal returns up to the surprise in biT.

3.7 Calibration of the Ex-post Predictive Ability in Alpha Forecasts
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We want to investigate how much of the ex-post abnormal returns can be explained by 

alpha forecasts. This explanatory power is well summarized by the usual R2 statistic. 

However we can increase the R2 simply by adding extra variables. In order to avoid 

overfitting the data, we use the adjusted R2 (R2a) as our measurement for the predictive 

ability of alpha forecasts.

One problem in measuring R2a using the data set is that we have only 37 observations 

in the time dimension for each stock. Because we may not obtain a statistically 

meaningful measurement if we try to compute R2a for each stock, we assume20 that all 

securities have the same coefficients and we pool the data. We denote the ex-post
A

abnormal return by zt instead of z, whenever there is no ambiguity. If we assume for the
A

moment the joint normality of z, and a ,  as in Treynor and Black (1973), then 

ziXk = a + b a irk+eiTt i = 1, 2 , . . . ,  105 k = l , 2 ,  . . . , 3 7  xk e  DFM.

Table 3.7.1 and Figure 3.7.2 show the simple regression results based on pooling 3885 

observations. The estimation results are almost identical for the various beta estimation 

methods. Both the constant and the alpha term are significant and the sign of the alpha 

term is positive as one would expect if one believed that the security analysis has value. 

As indicated in the scatter diagram (Figure 3.7.1) of ex-post abnormal returns against 

alpha forecasts, the dispersion of ex-post abnormal returns is varying as the alpha 

forecasts change. White’s Heteroscedasticity test (1980) confirms that we have enough 

evidence to reject the homoscedasticity assumption for the error term. When 

heteroscedasticity is present, the usual OLS covariance matrix is incorrect, which leads to 

incorrect inferences on coefficient parameters. Accordingly, we use the 

Heteroscedasticity Consistent Covariance Matrix Estimator21 (HCCME) proposed by

20 If each security or a group of securities is followed by individual analysts and they generate alpha and 
beta forecasts, then this assumption is hard to justify. In our case, however, the alpha and beta forecasts are 
generated by a computerized system, which supports our assumption.
21 There are several ways of estimating the HCCME. The HCCME we estimate is

(X’X )'X ’£2 X(X’X)-1
where (1) Q = Diag[e,2/(l-h,)]

(2) e, = regression residual
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White (1980). It is noticeable that for every beta estimation, R2a is surprisingly small, all 

less than 0.0012.

When we add a quadratic term in the regression, the adjusted R2 is increased for all 

beta estimation methods even though the coefficient itself is not significant (See Table 

3.7.2). Adding a quadratic term has an impact on how one should act on negative alpha 

forecasts. When alpha is smaller than -1, we use the signal in the alpha forecasts in the 

reverse way (See Figure 3.7.2); we take a long position instead of a short position. In 

order to investigate possible asymmetric effects, we use a dummy variable that takes 1 

when the alpha forecast is greater than zero and 0 otherwise. It turns out that using only 

positive alphas gives the best fit in terms of R2a. Both R2and R2a are now higher than in 

the other two specifications. This specification implies that we take a long position 

proportional to the signal when the signal is positive and very small fixed long or short 

positions (depending on the sign of the constant estimate) when the signal is negative. 

What is interesting about these specifications is that they differ only for negative alpha 

forecasts (See Figure 3.7.2). That is to say, the linear and parabolic specifications exploit 

the information in negative alpha forecasts, but in an opposite way, while the kinked line 

specification roughly ignores the signal contained in negative alpha forecasts.

So far we have focused on the adjusted R2 using all observation available up to the last 

date in DFM, that is x = X37. If we vary x from xi to X37, then we can investigate the 

dynamics of the predictive ability. For each h e  (1, 2, ..., 37}, we estimate the 

regression

zitt = E ( z iZk\IZt) + eirt i = 1 , 2 , . . . ,  105 k = l , 2 ........h

and compute R2a(h). By plotting R2a(h) against h, we can see how the predictive ability in 

alpha forecasts is changing over time. We display the results only for the case where the 

market beta is estimated using the Vasicek’s Bayesian method combined with the AC

(3) h, = t* element of the hat matrix (X(X’X) 'X).
this method has better finite-sample performance than simply using et or n et as the diagonal elements in

n - k
£2 . Even though MacKinnon and White (1985) find that “Jackknife” method is best, we do not attempt 
this in the benefit of computation time.
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method. The results are almost identical to those for other beta estimation methods. 

Figure 3.7.3 clearly shows that the predictive power is declining over time.

We can summarize our findings concerning the alpha forecasts as follows. First, the 

predictive power in alpha forecasts is small, as indicated by the adjusted R2. Secondly, 

both the quadratic effect and asymmetric effect increase the predictive power. Third, the 

noise level in negative alpha forecasts is higher than in positive alpha forecasts so that the 

use of the signal in the negative alpha forecasts depends on the conditional mean 

specification. Fourth, the predictive ability is declining over time.

3.8 Out-of-sample Analysis of the Treynor-Black Portfolio

In order to evaluate the TBP, we perform an out-of-sample analysis instead of in- 

sample analysis, for the following reasons. First, we want to avoid “overfitting the data” 

or “data mining” which is more likely to occur in the in-sample analysis. We think that 

out-of-sample analysis can reduce the likelihood of this happening. Second, we think the 

TBP framework is interesting not only in a theoretical viewpoint but also in a practical 

viewpoint, especially from the portfolio manager’s viewpoint. An out-of-sample 

experiment would tell us how the TBP framework can add value in a practical manner. It 

should be made clear that when we generate out-of-sample performance starting at some 

point (the second DFM, xi = 1/29/93) and rolling into the future, we use the only past and 

current information up to the time of making forecasts. The key parameters to be 

predicted during the out-of-sample experiment are listed below.

• Market beta

• Conditional mean of abnormal return

• Conditional variance of abnormal return

• Conditional covariance of abnormal returns

• Conditional mean of market return

• Conditional variance of market return
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(1) Forecasting Market Beta

Beta forecasts have two effects on the out-of-sample performance of the TBP. In the 

first stage, the estimated “past” abnormal returns depend on beta forecasts. In the second 

stage, it determines the sign and magnitude of the TBP weight. We use 5 market beta 

estimation methods described earlier and daily returns with 3 year expanding estimation 

window in order to forecast market beta for each security.

(2) Forecasting Mean of Abnormal Return

In previous sections, we estimate ex-post abnormal returns using future information in 

order to measure the “ex-post” predictive ability in alpha forecasts. In the out-of-sample 

experiment, we are not allowed to use future information. However we still need to 

estimate “past” abnormal returns to investigate how past abnormal returns are correlated 

to past alpha forecasts.

For each prediction time, k = 2,3, ... , 37, we forecast market beta for each security 

using information available up to the time of estimation. Let biXi be one of 5 market beta

forecasts.
A A

We define “past” abnormal return z .y ,., =mriTkl -  biZl mriTkl. Note that for each k, the 

prediction time is Tk and the information set at time Xk ( I Zk) is

I Xk = { (z** : i = !»2> •••»105 h =  1 , 2 , . . . ,  k-1} kj {a iZt }

For each prediction index k = 2, 3 , . . . ,  37, we estimate

Zit* = /  (a.r*) + eiTk h = 1 , 2 , . . . ,  k-1

using 3 specifications for the conditional mean (Line, Parabola and Kinked Line) and 5 

estimation methods (OLS, NRLAD, JSLAD, OWLAD, LAD). Note that by assuming 

that all securities have the same coefficients, we have 105 observations for estimation at 

the prediction index k = 2, and 210 observations for k = 3, and so on. Once the

coefficients are estimated, the forecast for the mean of abnormal return is given by

h z i r t \ IXk) = f ( a iZi) .
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This is our alpha forecast obtaining by discounting the raw, unadjusted alpha forecast 

from security analysis by its past performance.

(3) Forecasting Variance and Covariance of Abnormal Returns

In addition to predicting the conditional mean of abnormal returns, we need to make 

forecasts of the conditional variance of abnormal returns for each security and the 

conditional covariance of abnormal returns for all pairs of securities. We take the 

simplest specification for the conditional variance and covariance specification: the 

historical sample variance and covariance.

For each prediction time, k = 2,3, ... , 37, we estimate daily abnormal returns for each 

security using daily returns and S market beta estimates. We use 3 year expanding 

window. The daily abnormal return is defined by 

eit = Tit - biTk rmt

where biXt is one of market beta estimate and ru, rmt are daily returns available up to the

time of prediction. We take the sample variance and sample covariance multiplied by the 

number of days in that month as our forecasts for the variance and covariance of monthly 

abnormal returns. We think that if we use better methods such as GARCH to forecast the 

conditional variance and covariance, we might make potential improvement. We leave 

this issue for future empirical work.

(4) Forecasting Market: Mean and Volatility

The square of the maximized S-Ratio of the TBP can be decomposed into to the 

square of the market’s S-Ratio and the appraisal ratio. Under the Diagonal Model 

assumption,

jUp(w*)
_crp(w*)

From this expression, Ferguson (1975) argues that the contribution of a market forecast is 

equivalent to that of a single security and “if market forecasting is no more or less 

difficult than security analysis, then the effort put into market analysis should be about

f i 2 A a 2
2"+ X ^ T -  t i o 2
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equal to that put into following a single security”. W e think the contribution of a market 

forecast is more than that of a single security. Firstly, Ferguson’s argument is based on 

the assumption that the optimal portfolio weight for both the AP and TBP is known. 

Secondly, the appearance of making the contribution of a market forecast equivalent to a 

single security disappears when off-diagonal terms are not equal to zero. Third, it turns 

out to be very crucial to obtain a good quality market forecast at the second stage of the 

TBP construction where we mix the AP with a market index.

There are few papers (See Merton (1980)) on forecasting market return while lots of 

research have been done for the market volatility. We use AR(0)-GARCH(1,1) 

specification as in Engle, Kane and Noh (1993) as follows, 

r, = (x +  et

h, = w + as,-i2 + pht.i t = 1 , 2 , . . . ,  T

Daily returns and 3 year rolling estimation window are used to forecast monthly return 

and volatility of the S&P500 index over February 1993 through January 1996. Once an 

estimation is done, the k-step ahead volatility prediction (hr, T+k) is generated by 

hr, t+i = w + cxet + Phx

hi, T+k = w + (a  + P)hx, T+k-i k = 1 , 2 , . . .  ,m

where m is the number of days in the target month. The forecast of that month is then 

defined by the sum of forward daily volatility forecasts as

*=i

The same method applies to the forecast of market return. The monthly return and 

volatility forecasts of the S&P500 index is given in Figure 3.8.1. Prediction Root MSE 

is 2.2032.

(5) Evaluation

The algorithm generates the TBP weight process {wiTj I k = 2, 3, ... ,37} and the 

realized monthly TBP return process { rPtt I k = 2, 3, ... , 37}.  We evaluate the out-of- 

sample performance of the market index and the TBP by the Sharpe Ratio (SR) defined as
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where M and SD are ex-post sample mean and sample standard deviation respectively. 

We have assumed that the imaginary portfolio manager makes portfolio decision and 

executes buy and sell orders at the first date of the month. He is assumed to keep the 

same weight during the entire month. Therefore we can obtain daily TBP returns (783 

observations) as well as monthly TBP returns (36 observations). We use daily returns to 

compute the ex-post mean and standard deviation of the TBP and the market index. 22

Even though the Sharpe Ratio is extensively used in finance literature to evaluate a 

portfolio’s performance, the meaning of “return per one unit of risk” is not clear. The

22 The sample mean is same whether we use the monthly TBP return or the daily TBP return. However, the 
sample standard deviation depends on which frequency to use. We tend to observe that the sample standard 
deviation is smaller when we use monthly return for the S&P500 index. The sample standard deviation 
(annualized) is 7.8056 over 3 years from 2/1/93 to 1/31/96 when monthly returns are used. It is however 
8.9802 when daily returns are used. Since this difference indicates possible serial correlation, we have tried 
other methods to compute the standard deviation.

(1) Spectral Density Approach
If daily returns (rj are serially correlated, then it can be expressed by r, =  C(L)e,. By exploiting the central 
limit theorem for serially dependent process, we can approximate the annualized variance of daily returns as 

V a r (g r ) * 260C(1 )2o2
I-l

where C(l) is estimated by AR(p) approximation and the number of AR lags (p) is determined by some 
information criterion such as BIC. We have tried two BIC lag search methods: sequential simple to general 
method and general to simple method. The sequential simple to general method picks no lags so that the 
estimate of annualized standard deviation (8.99023) is same as the sample variance. However the general 
to simple method picks the 19th lag, which gives smaller estimate (8.0081).

(2) AR(0)-GARCH(1,1) Approach
Let {h(,t+i} be one day ahead variance forecast from the AR(0)-GARCH(1,1) specification over the 3 year 
prediction period. Then the annualized standard deviation can be estimated by I . The

estimated annualized standard deviation is 9.0862, which is approximately same as the sample standard 
deviation.

We think that the spectral density method using general to simple BIC lag search can be overfitting the 
data. Since other methods give reasonably similar estimate, we simply use sample standard deviation.
On the other hand, we have found some evidence that the daily returns of the TBP shows stronger “serial 
correlation” depending on the beta estimation method, conditional mean specification, and estimation 
method. We are not certain what creates such serial correlation. Given that we re-balance the TBP every 
month, it is possible that daily portfolio returns could have different regime for some periods if the TBP 
weight is not stable. This kind of structural breaks can cause a “spurious serial correlation”. In order to 
check this intuition, we have performed a small simulation generating two kinks of series. One is a random 
walk interrupted by multiple structural breaks with different mean and variance and the other one is a 
random walk interrupted by one time big shock. They show strong and consistent serial correlation which is 
not real. We do not attempt to develop a method to estimate the standard deviation in this situation. We 
leave it for further research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

106

M2-measure used among practitioners is a modified version of the Sharpe Ratio. It is 

defined by

Portfolio’s Sharpe Ratio x Market Risk - Market Return 

which23 measures the expected excess return of a portfolio over the benchmark (market) 

when its risk is the same as the market risk. We report both the annualized Sharpe Ratio 

and the annualized M2-measure.

(6 ) Out-of-Sample Experiment and Discussion

We begin our experiment using the Diagonal Model and imposing no restriction on the 

TBP weight. Table 3.8.1 shows the Sharpe Ratio and M2-measure for the Diagonal 

Model where we have 45 different TBPs (3 beta estimation methods x 3 conditional mean 

specifications x 5 estimation methods) . 24 By looking at the sign of the M2-measure in 

Table 3.8.1, we can see how the 45 TBPs perform relative to the S&P500 index. TBP is 

better than the S&P500 index in 22 out of 45 cases (about 50%). Table 3.8.2 indicates 

that both the return and the risk (std. dev.) of the TBP are large. The main reason seems 

that the ratio of the alpha of the AP to residual variance is over-estimated (See the 

formula for the TBP weight and its simplification in Theorem 3-3) and as a result the 

TBP weight assigned to the AP is large and volatile which makes the return and standard 

deviation of the TBP return large. In two cases (based on the OLS estimation), the 

Sharpe Ratio is even negative. The reason we want to mix the AP with a market index is

23 Let rp = excess return o f a portfolio
CTP= risk of a portfolio
rm= excess return o f a benchmark
CTm= risk o f a benchmark.

In the (r,o) space, (rp,ap) is a point and rp/op is the slope o f the line, r = (rp/op)cr, passing through the point 
and the origin. This line can be interpreted as all return and risk combination which the portfolio can 
generate assuming the return and risk trade-off relationship is linear. When o  = o m, r = (rp/ap)cjm which 
tells us how much return the portfolio can generate when its risk same as the market’s. If we subtract the 
market return (rm) from (rj/<rp)am, it is the expected excess return of the portfolio over the market when its 
risk is same as the market risk. When we use the Sharpe Ratio (Sp = rp/op, Sm = rn/On,), we are interested in 
whether Sp-Sm > 0. On the other hand, when we use the M2-measure (M2=Spa m-rm), we are interested in M2 
> 0. The following relationship can be proven.

Sp-SmS 0  <=>M2 2:0.
24 We report only three beta estimation methods (Beta Forecasts, Vasicek’s method applied AC beta, JS 
method applied to AC betas) which are supposed to be superior to the other two methods (OLS, AC).
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for the benefit of diversification. By taking a large short position on the market, we have 

“concentration” rather than diversification. However, when we restrict the TBP weight to 

be between [0,1], the performance improves and the TBP is better than the market in 

many cases. This restriction makes the TBP weight stable and reduces the risk o f the 

portfolio. When the [0,1] restriction is imposed, the TBP weight tends to be equal to 1. 

This means that the TBP is same as the AP. From this observation, we think that the TBP 

model and alpha forecasts are capable of generating the AP better than the market. The 

problem seems to be not in the predictive ability but in the improper mix of the AP and 

the market.

In the Diagonal Model without restriction on the TBP weight, the OLS estimator is 

always dominated by the LAD estimator and shrinkage LAD estimators (See symbol * in 

Table 3.8.1). Given that the OLS estimator is not stable and is sensitive to outliers and 

the LAD estimator is robust to outliers in the dependent variable, this result is not 

surprising. Interestingly, the JSLAD estimator tends to achieve the best performance 

among shrinkage LAD estimators even though the HCLAD is theoretically best. In many 

cases the JSLAD is better than both estimators. This can be explained by looking at the 

return and risk table (See Table 3.8.2). In most cases the return of the JSLAD estimator 

is a convex combination and is smaller than one of its components. The same thing 

happens to the risk, but risks tend to be much smaller which leads to the improved Sharpe 

Ratio.

The effect of the quadratic term is mixed. However the kinked line specification is 

uniformly better than the other specifications no matter what the [0 ,1 ] restriction is 

imposed on the TBP weight. Therefore, in the Diagonal Mode, using the signal from 

positive alpha forecasts and ignoring the signal from negative alpha forecasts gives the 

best performance. Given that the adjusted R2 is highest in the kinked line specification, 

the adjusted R2 is an important criterion to measure the predictive ability of alpha 

forecasts.

Comparing the result with Table 3.8.5 shows that managing the market risk (market 

beta) properly is an important ingredient in obtaining better TBP. The TBP based on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

108

beta estimates without any adjustment is not better in most cases than the TBP based on 

the market beta adjusted by AC method along with Bayesian and JS shrinkage. Those 

managed market beta estimates also generate higher Sharpe Ratios than the beta forecasts 

itself when no [0 , 1 ] restriction is imposed.

The out-of-sample performance for the Covariance Model is shown in Table 3.8.3 and 

Table 3.8.4. The effect o f using off-diagonal terms2 5  improves the S-Ratio and M2- 

measure in many cases. The Covariance Model is better than the Diagonal Model in 39 

out of 45 cases when no restriction is imposed on the TBP weight (Count the number of 

the symbol (+) in Table 3.8.3). Using off-diagonal terms favors the LAD estimator, the 

JSLAD estimator and the kinked line specification. The other properties in the Diagonal 

Model discussed earlier are fairly preserved in the Covariance Model. First, the OLS 

estimator is dominated by the LAD estimator and shrinkage LAD estimators. Second, the 

effect of using the quadratic term is mixed and the kinked line specification is best. As 

far as the comparison of estimators is concerned, the JSLAD is best in 7 out of 9 cases 

when there is no restriction on the TBP weight. When the [0,1] restriction is imposed, the 

LAD estimator and the JSLAD estimator are better than the other estimators mostly, and 

the OWLAD is best in two cases where the performance of the OLS estimator is not 

much worse than the LAD estimator. What is surprising is that even though R2 and 

adjusted R2 are so small (about 0.001-0.002 as seen in section 3.7), there is a potential 

gain of using the properly managed Covariance TBP.

Theoretically we prefer the Covariance Model to the Diagonal Model because we use 

all information available. We also prefer the Vasicek’s beta estimation to the Beta 

Forecast and the James-Stein beta estimation because the Beta Forecast is not on our 

control and the shrinkage factor in the James-Stein beta estimation is arbitrary. In this 

theoretically preferred block, we can compare the performance of each estimator. The 

M2-measure is 2.948, 4.910, 5.958, 4.868 and 5.948 for the OLS, NRLAD, JSLAD, 

OWLAD and LAD estimator respectively. The maximum is given by the JSLAD

25 In this experiment, we use all off-diagonal without testing whether or not they are significant. For one 
run (Covariance Model, No [0,1] restriction, Vasicek’s beta estimation, Kinked Line specification and
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estimator. Even though this is not the global maximum (which is 6.758 given by the 

Covariance Model, Beta Forecast, Kinked Line, and the JSLAD estimator), we discuss 

this portfolio in detail.

Figure 3.8.2 shows how the TBP weight for the 3 estimators is changing over time. 

Note that the weight given to the AP is very large and volatile. The closed form solution 

for the TBP weight is given by Theorem 3-3 in Section 3.3. Since Pa is a weighted 

average of cross-sectional beta forecasts which is close to one, we assume that pA = 1 for 

now. Then the TBP weight (w) is simplified as

h*'£lh*
A*m
<r*m

The numerator is the ratio26 of the alpha of the AP and the residual variance and the 

denominator is the ratio of the mean and variance of the market index. Figure 3.8.1 and 

Figure 3.8.3 clearly show that over the prediction period the ratio in the numerator is 

much greater than the ratio in the denominator. If we are willing to assume that our 

market forecast is reasonable, then the source of the over-estimation of the TBP weight 

comes from the over-estimation of the mean-variance ratio in the numerator. 27  The effect 

of the deviation of pA from 1 is that as the distance between pA and zero is smaller, it 

makes the TBP weight smaller.28  By comparing Figure 3.8.2 and Figure 3.8.4, we notice 

that the high peaks in the TBP weight are corresponding to the high peaks in the forecast 

of the beta of the AP .29  Figure 3.8.5 shows the time path of each estimate in the preferred 

block. As expected, shrinkage estimates are located between the OLS estimate and the

JSLAD estimation), a simple test shows that 3170 off-diagonal terms (out of 5460) are significant on 
average at 10% level and 2273 terms at 5% level.
26 Note that this ratio is equivalent to what we maximize in order to obtain the AP weight.
27 Figure 8-3 reveals that the forecast of the residual variance is surprisingly flat over the entire sample 
period while the actual residual return is volatile. The initial estimation window is 3 years and expansion 
window is used to increase the precision of the sample covariance matrix. Estimating unconditional 
moments instead of conditional moments might possibly be a source of the flat volatility.
28 It can be shown that Aw*/ApA > 0 if the mean o f the Minimum Variance Portfolio (MVP) on the frontier 
generated by the AP and the market index is positive; (l-p A)aACTm2+|imh*’f2h* > 0.
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LAD estimate. The OLS estimate is greater than the other estimates which leads to more 

over-estimated alpha of the AP and more over-estimated TBP weight. This might be one 

of reasons why the OLS estimator is always dominated by the LAD estimator and 

shrinkage LAD estimators.

If the market is in equilibrium all the time, then the alpha for any security is zero. In 

this case we have zero AP and the TBP is same as the market portfolio. In this sense, 

market equilibrium is our default position or “the mean o f the prior distribution of the 

TBP”. Shrinkage of coefficients toward zero using Ridge estimation allows us to embody 

this prior information in the process o f estimating the conditional mean of abnormal 

returns. Furthermore, shrinkage toward zero could stabilize the TBP weight. 30 The zero 

point serves as the mean of the prior distribution and we choose the OLS covariance 

matrix different only up to a scale (Xo2;shrinkage factor) for the prior covariance. 31 We 

determine the optimal value for the shrinkage factor (X02) by minimizing the Prediction 

Mean Squared Errors (PMSE). Table 3.8.6 shows the results of the Ridge estimation 

applied to the theoretically preferred block. The Sharpe Ratio and M2  are both decreased, 

but return and risk are stabilized. The TBP weight is also stabilized shown in Figure 

3.8.6. The JSLAD estimator still gives the maximum M2-measure in this block. We 

compute the Wealth Index using this TBP. The Wealth Index for the TBP, the AP and 

the S&P500 index is in Figure 3.8.7. The AP is moderately outperforms the market. On 

the other hand, the TBP generated by putting a  large weight on the AP displays a huge 

return as well as risk. The superiority of the TBP mainly comes from the early period. 

This observation can be well explained by the dynamics of predictive ability we have

29 The definition of pA is h*’P where h* is the forecast of the AP. We observe that the sample correlation 
between the forecast of the AP weight and beta forecast tends to be negative. When it is positive 
occasionally, we have high peaks in the forecast of p A.
30 Note that Aw*/AaA > 0 if the mean of the MVP is positive; (l-PA)aAa ra2+pmh*’Qh* >  0. Hence, if we 
shrink coefficients, then we decrease a A which in turn decrease w*. However, if  (l-p A)a A<jm2+|imh*’fih* < 
0, then we take long position on the risk-free asset and short position on the TBP. In other words, we 
reverse the sign of the TBP weight. In this case, Aw*/AaA < 0 and shrinkage toward zero can increase the 
instability in the TBP weight.
31 Suppose y = Xp + e where e ~ N(0,ct2I). The MLE is given by b = (X’X)''X’y. In this case, our 
assumption on the prior distribution is P ~ NfO.Xo^X’X)'1). Then the ridge estimator bR(k) is given by 
bR(X) = Xb where X = (1 /ct2)/[( 1 /cr^+f 1 /Xq)].  The same estimated ridge parameter applies to the LAD and 
JSLAD estimator.
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investigated in section 3.7 (See Figure 3.7.3) where we have found that the predictive 

power is very good in early period and is declining over time. Out-of-sample experiment 

shows that a $1 invested in a properly managed TBP Covariance Model would yield 

$1,810 with the Sharpe Ratio being 1.340 over 3 years. On the other hand, if you invest 

$1 in the S&P500 index over 3 years, the final wealth is $1,259 and the Sharpe Ratio is 

0.909. This result shows that a large potential value can be obtained and it can be done 

without requiring a big threshold of forecasting ability.

3.9 Conclusion

Treynor-Black Portfolio model has a potential to be a valuable method for active 

portfolio management when a great deal of effort to refine abnormal return forecasts and 

market risk is taken. In the paper, we have taken several specifications for the conditional 

mean of abnormal returns and used various estimation methods in order to refine alpha 

forecasts. The adjusted R 2  turns out to be a good measure for the predictive ability 

contained in alpha forecasts. In order to carry market risk management, we have used 

Dimson’s Aggregate Coefficient method coupled with Bayesian and James-Stein 

shrinkage. Out-of-sample experiments show that the conditional mean specification, 

estimation method and market risk management all together play a significant role in 

obtaining better performance of the TBP model.

The Covariance Model shows better performance than the Diagonal Model. We have 

used simply sample residual covariance matrix, but more advanced econometric tools to 

forecast the covariance matrix seems necessary. The use of the newly developed 

shrinkage LAD estimators as a tool to extract predictive ability from the raw alpha 

forecast turns out to be useful. Out-of-sample experiments show that even though the 

predictive power measured by the adjusted R2 is as low as 0.0015, the potential value of 

using the TBP Model is large, which indicates that the minimum threshold of forecasting 

power may be lower than many academicians currently think. However, it turns out that 

despite its superiority in terms of both the Sharpe Ratio and the Wealth Index, the TBP
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weight is not stable, which we conjecture might be caused by the over-estimation of the 

ratio the alpha of the AP to residual variance. Ridge estimation is helpful to reduce the 

instability in the TBP weight. When we impose the [0,1] restriction on the portfolio 

weight, the TBP is stabilized and still better than the market index. We have found that 

the OLS estimator is always dominated by the LAD estimator and shrinkage LAD 

estimators.

In this study, we have focused on the stratified random sample only. W e need to 

extend the same study for the total 600 stocks. We have not performed a formal 

statistical procedure to test whether the difference between the best TBP’s and the 

market’s Sharpe Ratio is statistically greater than zero. We believe that W hite’s (1996) 

bootstrap method can be used for this purpose. This paper has not addressed transaction 

costs and management fees which are important issues in an active portfolio management. 

We think we need to incorporate these issues in the TBP framework. In order to measure 

what is the minimum required predictive power in the TBP Model to achieve a given 

level of Sharpe Ratio, a simulation study like Hodges & Brealey (1973) is needed. In this 

paper, we divided the 3 month ahead alpha forecast by 3 and treated it as 1 month ahead 

forecast for simplicity. If we want to use the full information, we might need to 

investigate some interesting issues such as how to update old forecasts when new forecast 

information arrives within the old forecast’s horizon because new forecasts arrive every 

month. We leave these issues for future research.

Appendix 1

Proof o f Theorem 3-1
According Theorem 2 in Roll (1977) the weight vector (h) is given by

h = OqQ.-1 a - r ° t

LM>“ r J
where po and cto2  are the mean return and variance of the Minimum Variance Portfolio 
(MVP) on the Active Efficient Portfolio. r° is the reference rate of return (usually riskless 
rate of return) with respect to which the tangential portfolio is computed. In our case, r° = 
0. Corollary 2 in Roll (1977) also gives us the formulas for the mean return and variance 
of the MVP as follows.
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Ho = b/c, G02 =  1/c 
where b, c are elements of the Information Matrix (A) defined as

a'£l~lcc a b

a'CTh i ST h b cA s  [ a i ]  =

Hence h =  tf 'fT 'a  = [a 'f i '1i] '1£2'1a  which completes the proof. Q.E.D.

Proof o f Theorem 3-3
Considering that we have only two assets to combine, we define their mean vector and 
co-variance matrix as follows.

E s

P a ~aA +PAMm'
P m  .

Am
2o  a a. Am m

PZn2m +h*'Oh* pAa, 

. Pa<
Then the TBP is the solution to the following maximization problem. 

w’n
Max , subject to w’v = 1

where w is 2x1 vector. This is the tangential portfolio on the efficient frontier 
constructed based on the AP and the market portfolio. By the same reasoning in the proof 
of Theorem 3-1, the optimal weight is given by 

w* = ( p T ’iy ’r V
P A < ~ P m ^A m

P a <*1  ~  P m ° A m  + P n P l  ~  P A <* An

Note that
( 1 ) p X 'i  = (a m2h*,2 h * ) 1[(l-pA)a Aa m 2  + pmh*'Sh*].

(2)
- a APAo „ + p mh*'Qh*_

Therefore,

W]* =

w2* =

a Ao l
{ \ - p A)a Ao l + n mh*' Qh*  

- a J A<r2 +Mmh*'Qh* 
{ \ - P A)a Ao l+ H mh*' &h*

. Q.E.D.

Appendix 2: How to Select AC Lags and Leads: Out-of-sample Correlation 
Between Ex-post Abnormal returns and Excess Market Return

For each prediction time t e  DFM s  { t ; : i = 1, 2, ... , 37}, we estimate the following 
CAPM equation using daily returns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

114

ru = a i+  ^ b ik rm,+k + eit t = l , 2 , ... ,x i = l , 2 , . . . , N
k= -n

The beta estimate (bj) is then defined as the sum of all coefficients.

M " ) =  Z 4 ( « ) -
k—-n

Then we generate ex-post abnormal returns using the predicted beta and monthly excess 
return, market return as follows.

z iT(n) s  mrjT - bir (n ) mrmT.

We should expect that if the beta estimate is unbiased, then the correlation between out- 
of-sample ex-post abnormal returns and the excess market return should be zero. The 
deviation from zero indicates the bias in beta estimate. We regress the deviation of ex­
post abnormal returns from unadjusted alpha forecasts on a constant and the excess 
market return.

ziT(n)- a iT = c0i + cumrmT + eir i = 1, 2 , . . . ,  N xe DFM 
Since we expect coi = Cn = 0 for all i, we pool the data and estimate 

ziT(n) - otix = c0  + cimrmT + eiT i = l , 2 ,  . . . , N  xe DFM 
If the slope coefficient is significantly positive, it indicates that the estimated beta is
downward biased. If negative, it means upward bias. On the other hand, the deviation of
the intercept coefficient from zero indicates a bias in the unadjusted alpha forecast, but 
only when there is no bias in beta estimate.
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Table 3.4.1 Date Forecasts Made

Year Month Date Prediction
Index

Number of days between DFM & 
Buy and Sell Execution Date

1992 12 31 1 0
1993 01 29 2 0
1993 02 26 3 0
1993 03 26 4 3
1993 04 30 5 0
1993 05 28 6 1
1993 06 25 7 3
1993 07 30 8 0
1993 08 27 9 2
1993 09 24 10 4
1993 10 29 11 0
1993 11 26 12 2
1993 12 31 13 0
1994 01 28 14 1
1994 02 25 15 1
1994 03 31 16 0
1994 04 29 17 0
1994 05 27 18 2
1994 06 24 19 4
1994 07 29 20 0
1994 08 26 21 3
1994 09 30 22 0
1994 10 28 23 1
1994 11 25 24 3
1994 12 30 25 0
1995 01 27 26 2
1995 02 24 27 2
1995 03 31 28 0
1995 04 28 29 0
1995 05 26 30 3
1995 06 30 31 0
1995 07 28 32 1
1995 08 25 33 4
1995 09 29 34 0
1995 10 27 35 2
1995 11 24 36 4
1995 12 29 37 0

Note: Buy and Sell Execution Date = Buy and Sell Decision Date = The First Business Date 
in The Month

Table 3.4.2 Summary Statistics for Alpha & Beta Forecasts

Mean Std. Minimum 25% 50% 75% Maximum

Alpha -1.355 2.052 -5.404 -2.783 -1.742 -0.269 8.135

Beta 0.981 0.266 0.208 0.847 0.986 1.141 1.703
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Table 3.6.1 Lag Selection for the Aggregate Coefficient Method

#Lags Intercept Slope R R2. Prob(F) Mean of Beta

0 1.5364004 0.0522124 0.0001944 -0.0000631 0.3849372 0.8810

(0.1383879) (0.0600879)

1 1.5367453 -0.0672165 0.0003213 0.0000639 0.2639868 0.9995

(0.1385682) (0.0601662)

2 1.5381416 -0.1120830 0.0008924 0.0006351 0.0626334 1.0447

(0.1386105) (0.0601846)

3 1.5381416 -0.1120830 0.0008924 0.0006351 0.0626334 1.0447

(0.1386105) (0.0601846)

4 1.5387283 -0.1704644 0.0020579 0.0018009 0.0046828 1.1029

(0.1387398) (0.0602407)

5 1.5402138 -0.1736378 0.0021271 0.0018701 0.0040367 1.1056

(0.1390003) (0.0603538)

Note: Standard errors are in parenthesis.

Table 3.6.2 Relationship between Degree of Discontinuity and Shrinkage Factor

P[F<h] 0.1 0.2 0.3 0.4 0.5 0.6 0.7

h 0.0158 0.0642 0.1485 0.2750 0.4549 0.7083 1.00742

Table 3.6.3 Estimation Methods for Market Beta

Method Description

1 OLS estimation with no restriction

2 Institution’s Beta Forecasts

3 AC method with n = 1

4 Vasicek’s Bayesian estimation applied to AC beta

5 James-Stein Shrinkage estimation applied to AC beta
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Table 3.7.1 Linear Specification

Beta Constant Alpha Rz R2. White’s

Estimation Heteroscedasticity Test

1 0.3970(0.1333) 0.1909 (0.0944) 0.001341 0.001084 92.6821 (0.0000)

2 0.3371 (0.1330) 0.1940(0.0942) 0.001391 0.001134 92.7363 (0.0000)

3 0.3122(0.1336) 0.1872 (0.0950) 0.001286 0.001028 94.9599 (0.0000)

4 0.3210(0.1334) 0.1911 (0.0947) 0.001342 0.001085 93.4382 (0.0000)

5 0.3154(0.1336) 0.1892 (0.0950) 0.001314 0.001057 94.9233 (0.0000)

Note: (1) Heteroscedasticity Consistent Covariance Matrix used for the standard errors

(2) P-value in parenthesis for White’s Heteroscedasticity Test

Table 3.7.2 Parabolic Specification

Beta Constant Alpha Alpha2 Rz R2. White’s

Heteroscedasticity Test

1 0.2808 (0.1523) 0.1914 (0.0946) 0.0554 (0.0455) 0.001841 0.001327 98.1026 (0.0000)

2 0.2257 (0.1521) 0.1945 (0.0943) 0.0531 (0.0453) 0.001851 0.001337 98.4132 (0.0000)

3 0.1936(0.1526) 0.1877(0.0952) 0.0565(0.0462) 0.001804 0.001290 99.5293 (0.0000)

4 0.2037 (0.1525) 0.1916 (0.0948) 0.0559 (0.0458) 0.001851 0.001337 98.4014 (0.0000)

5 0.1975(0.1526) 0.1898(0.0952) 0.0562(0.0462) 0.001827 0.001313 99.6631 (0.0000)

Note: (1) Heteroscedasticity Consistent Covariance Matrix used for the standard errors

(2) P-value in parenthesis for White’s Heteroscedasticity Test

Table 3.7.3 Kinked Linear Specification

Beta Constant Alpha*(Alpha>0) Rz R2. White’s

Heteroscedasticity Test

1 0.1823(0.1198) 0.3939(0.1960) 0.001793 0.001536 92.2511 (0.0000)

2 0.1225(0.1194) 0.3896(0.1951) 0.001762 0.001505 92.3440 (0.0000)

3 0.1000(0.1200) 0.3910(0.1979) 0.001762 0.001505 94.4778 (0.0000)

4 0.1057(0.1198) 0.3952(0.1967) 0.001804 0.001547 92.9745 (0.0000)

5 0.1016(0.1199) 0.3930(0.1978) 0.001781 0.001524 94.4409 (0.0000)

Note: (1) Heteroscedasticity Consistent Covariance Matrix used for the standard errors

(2) P-value in parenthesis for White’s Heteroscedasticity Test
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Table 3.8.1 Sharpe Ratio and M2-measure: Diagonal Model (S&P500 Sharpe Ratio = 0.909)

Sharpe Ratio M^-measure

OLS NRLAD JSLAD OWLAD LAD OLS NRLAD JSLAD OWLAD LAD 
No Restriction Imposed on TBP weight

Beta Line
Parabola
Kinked

-0.360
-0.043
1.096

0.169
0.181
1.218

0.824
0.943
1.481

0.144
0.182
1.218

Vasicek Line
Parabola
Kinked

0.406
0.021
1.052

0.843
0.585
1.243

0.638
0.720
1.293

0.827
0.583
1.238

JS Line
Parabola
Kinked

0.327
0.264
0.973

0.783
0.505
1.165

1.005
0.660
1.216

0.774
0.504
1.164

[0,1] Restriction imposed on TBP weight

Beta Line
Parabola
Kinked

0.895
0.934
1.076

0.922
0.951
1.095

1.033
0.999
1.235

0.921
0.952
1.095

Vasicek Line
Parabola
Kinked

0.905
0.956
1.094

0.957
0.989
1.119

1.058
0.963
1.146

0.955
0.989
1.118

JS Line
Parabola
Kinked

0.904
0.957
1.095

0.965
0.986
1.120

0.941
0.861
1.145

0.963
0.987
1.120

0.823 -11.400 -6.650 -0.769 * -6.874 -0.773
0.942 -8.549 -6.543 0.302 * -6.528 0.294
1.481 1.680 2.770 5.132* 2.771 5.130

0.637 -4.523 -0.595 * -2.439 -0.742 -2.443
0.719 -7.981 -2.914 -1.701 * -2.926 -1.711
1.292 1.284 2.995 3.448* 2.953 3.436

1.005 •5.232 -1.136 0.861 * 0.774 0.855
0.659 -5.796 -3.629 -2.240 * -3.642 -2.250
1.215 0.575 2.295 2.755 * 2.283 2.745

1.025 •0.131 0.112 1.033 0.107 1.036
0.999 0.218 0.374 0.802 * 0.384 0.802
1.235 1.501 1.667 2.920 1.668 2.921

1.058 -0.037 0.427 1.337* 0.413 1.337
0.963 0.420 0.713 0.485 0.714 * 0.480
1.146 1.654 1.886 2.124* 1,878 2.123

0.940 -0.050 0.497 * 0.287 0.481 0.279
0.859 0.430 0.691 •0.433 0.696 * -0.451
1.145 1.665 1.894 2.114* 1.890 2.112

Note: * indicates the best estimator in the row.
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Table 3.8.2 TBP Return and Risk: Diagonal Model (S&P500 Return = 8.166: S&P500 Risk = 8.980)

Sharpe Ratio M '-measure

OLS NRLAD JSLAD OWLAD LAD OLS NRLAD JSLAD OWLAD LAD
No Restriction imposed on TBP weight

Beta Line
Parabola
Kinked

-39.403
-7.474

34.356

14.396
97.310
34.664

70.700
24.341
43.248

12.180
94.105
34.743

70.498
24.350
43.247

109.423
175.282
31.334

85.295
538.260
28.465

85.831
25.812
29.204

84.649 85.629 
515.963 25.847 
28.527 29.208

Vasicek Line
Parabola
Kinked

83.036
1.052

35.983

77.618
17.222
32.839

45.198
14.879
24.499

74.916
17.142
32.742

45.210
14.848
24.458

204.691
51.008
34.193

92.058
29.445
26.422

70.872
20.669
18.943

90.615
29.380
26.442

70.937
20.657
18.930

JS Line
Parabola
Kinked

95.752
11.937
34.250

58.326
15.613
30.611

49.408
14.948
22.722

47.888
15.526
30.615

49.360
14.915
22.691

293.107
45.220
35.186

74.500
30.900
26.278

49.151
22.650
18.684

74.827
30.817
26.311

49.119
22.641
18.675

[0,1] Restriction imposed on TBP weight

Beta Line
Parabola
Kinked

8.799
8.647
9.539

9.286
8.749
9.581

10.706
8.957

10.794

9.262
8.757
9.585

10.710
8.956

10.796

9.833
9.261
8.861

10.072
9.199
8.750

10.451
8.969
8.744

10.054
9.198
8.752

10.452
8.968
8.744

Vasicek Line
Parabola
Kinked

8.872
8.860
9.725

9.294
8.749
9.623

11.637
9.023
9.403

9.277
8.748
9.618

11.641
9.024
9.400

9.800
9.267
8.893

9.713
8.849
8.597

10.996
9.367
8.206

9.712
8.846
8.600

11.000
9.373
8.205

JS Line
Parabola
Kinked

8.899
8.895
9.758

9.323
8.746
9.601

11.577
9.429
9.323

9.307
8.746
9.601

11.583
9.435
9.320

9.846
9.292
8.914

9.664
8.867
8.570

12.299
10.950

8.144

9.666
8.863
8.574

12.317
10.983
8.143
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Table 3.8.3 Sharpe Ratio and Mz-measure: Covariance Model (S&P500 Sharpe Ratio = 0.909)

Sharpe Ratio M'-measure
OLS NRLAD JSLAD OWLAD LAD OLS NRLAD JSLAD OWLAD LAD

No Restriction imposed on TBP weight

Beta Line 0.049 
Parabola 0.723 
Kinked 1.S31

0.344
0.974
1.600

0.845
1.176
1.662

0.336
0.974
1.599

0.845
1.174
1.661

-7.730 + 
-1.673 + 
5.586 +

-5.074 + 
0.576 + 
6.205 +

-0.579 + 
2.398 + 
6.758 +

-5.148+ 
0.579 + 
6.196

-0.579 + 
2.380 + 
6.751 +

Vasicek Line
Parabola
Kinked

-0.264
0.462
1.238

-0.119
0.846
1.456

0.995
0.963
1.573

-0.162
0.846
1.451

0.995
0.962
1.572

-10.540 
-4.016 + 
2.948 +

-9.238 
-0.572 + 
4.910 +

0.773 + 
0.484 + 
5.958 +

•9.625 
-0.571 + 
4.868 +

0.771 + 
0.471 + 
5.948 +

JS Line
Parabola
Kinked

-0.150
0.297
1.203

-0.396
0.797
1.412

1.027
0.949
1.517

-0.438
0.798
1.409

1.027
0.948
1.516

•9.512 
-5.497 + 
2.637 +

-11.720 
-1.008 + 
4.510 +

1.057 + -12.099 + 
0.358 + -0.998 + 
5.456 + 4.487 +

1.058 + 
0.345 + 
5.447 +

[0,1] Restriction imposed on TBP weight

Beta Line
Parabola
Kinked

0.765
0.942
1.205

0.744
0.929
1.232

1.019
1.063
1.435

0.747
0.931
1.232

1.019
1.063
1.435

-1.293 
0.294 + 
2.659 +

•1.482 
0.180 
2.897 +

0.980 
1.378 + 
4.717 +

-1.460 
0.197 
2.898 +

0.984 
1.377 + 
4.718 +

Vasicek Line
Parabola
Kinked

0.792
0.979
1.210

0.867
1.033
1.244

1.077
0.994
1.261

0.865
1.033
1.242

1.077
0.994
1.261

-1.054 
0.626 + 
2.703 +

-0.378 
1.108 + 
3.003 +

1.504 + 
0.760 + 
3.158 +

-0.399 + 
1.112 +  

2.985 +

1.507 + 
0.757 + 
3.157 +

JS Line
Parabola
Kinked

0.789
0.980
1.214

0.866
1.027
1.248

1.015
0.987
1.267

0.864
1.028
1.247

1.015
0.987
1.267

-1.082 
0.636 + 
2.732 +

-0.388 
1.057 + 
3.042 +

0.948 + 
0.696 + 
3.216 +

-0.407 
1.065 + 
3.030 +

0.951 + 
0.693 + 
3.214 +

Note: + indicates the M -measure is greater than the M -measure in the Diagonal Model.
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Table 3.8.4 TBP Return and Risk: Covariance Model (S&P500 Return = 8.166: S&P500 Risk = 8.980)

Sharpe Ratio M'-measure

OLS NRLAD JSLAD OWLAD LAD OLS NRLAD JSLAD OWLAD LAD
No Restriction imposed on TBP weight

Beta Line
Parabola
Kinked

4.034
36.106
68.657

15.868
37.503
62.694

30.256
35.948
51.146

15.639
37.478
62.875

30.245
35.882
51.098

83.054
49.933
44.833

46.080
38.522
39.176

35.798
30.559
30.775

46.533
38.487
39.315

35.800
30.553
30.761

Vasicek Line
Parabola
Kinked

-21.434
20.664
52.436

-8.644
26.476
45.674

92.562
21.943
35.696

-12.346
26.411
45.674

92.746
21.895
35.657

81.075
44.744
42.368

72.399
31.310
31.443

92.987
22.782
22.696

75.986
31.225
31.468

93.190
22.765
22.687

JS Line
Parabola
Kinked

-9.729
13.608
48.660

-38.617
24.074
41.968

40.545
20.648
32.493

-46.863
24.032
41.926

40.558
20.602
32.463

64.901
45.783
40.449

97.588
30.201
29.732

39.475
21.752
21.419

106.987
30.107
29.755

39.485
21.737
21.414

[0,1] Restriction imposed on TBP weight

Beta Line
Parabola
Kinked

7.958
9.532

11.532

8.170
9.535
11.632

11.972
10.591
13.827

8.162
9.551

11.638

11.983
10.590
13.829

10.398
10.118
9.567

10.976
10.259
9.442

11.754
9.965
9.638

10.930
10.256
9.445

11.760
9.965
9.639

Vasicek Line
Parabola
Kinked

8.163
9.809

11.526

8.818
9.923
11.390

12.456
9.892
10.978

8.794
9.923
11.378

12.464
9.888

10.976

10.307
10.019
9.523

10.168
9.608
9.158

11.568
9.952
8.706

10.167
9.604
9.162

11.571
9.951
8.705

JS Line
Parabola
Kinked

8.137
9.821

11.550

8.811
9.867
11.365

11.054
9.843
10.927

8.788
9.870
11.358

11.057
9.839

10.925

10.315
10.020
9.517

10.173
9.607
9.106

10.891
9.974
8.621

10.171
9.602
9.110

10.892
9.973
8.621
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Table 3.8.S M2-measure for Unmanaged Beta Estimates

OLS NRLAD JSLAD OWLAD LAD
Diagonal Model
No Restriction
B eta E stim ates Line -8.681 -8.169 -5.891 -8 .1 9 9 -5 .8 8 8

Parabola -4 .0 9 0 -3.228 -4 .433 -3 .2 3 2 -4 .4 5 6
Kinked Line 1 .004 0.522 -1 .853 0 .5 4 2 -1 .863

[0,1] Restriction
B eta E stim ates Line -0 .0 2 7 0.029 0 .1 6 4 0 .0 2 7 0 .1 6 5

Parabola 0 .3 5 6 0.398 0 .266 0 .3 9 7 0 .2 6 7
Kinked Line 1 .497 1.440 1 .159 1.441 1 .159

C ovariance
Model
No Restriction
B eta E stim ates Line -8.481 -6.945 -3 .869 -6 .9 9 7 -3 .8 6 7

Parabola -2 .0 8 7 -1.160 -1.961 -1 .1 6 5 -1 .9 7 7
Kinked Line 3 .4 6 0 3.768 2 .192 3 .7 8 5 2 .1 8 4

[0,1] Restriction
B eta E stim ates Line -0 .7 4 2 -0.293 0 .2 8 2 -0 .3 0 5 0 .2 8 3

Parabola 0 .7 2 5 1.029 1 .034 1 .0 2 6 1 .032
Kinked Line 2 .5 8 8 2.586 2 .225 2 .5 8 5 2 .2 2 5

Table 3.8.6 Ridge Estimation

Ridge-O LS Ridge-NRLAD Ridge-JSLAD Ridge-OW LAD Ridge-LAD
Statistics
S harpe Ratio 1 .183 1.296 1.340 1.291 1 .339
M2-m easu re 2 .4 5 7 3 .475 3.864 3 .4 3 0 3.861
Return 2 7 .6 0 0 2 5 .5 3 5 21.035 25 .461 21.041
Std. D ev. 2 3 .3 3 2 19 .698 15.702 19 .7 1 8 15 .710
Final W ealth 2 .1 0 6 2 .028 1.810 2 .0 2 3 1 .810
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Figure 3.4.1 Histogram of Alpha Forecasts

Hi s t o g r a m of  A l p h a  F o r e c a s t s :  
( b a s e d  o n  6 4 6  s e c u r i t i e s )

Figure 3.4.2 Histogram of Beta Forecasts

Hi s t o g r a m of  B e t a  F o r e c a s t s :  
( b a s e d  o n  6 4 6  s e c u r i t i e s )
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Figure 3.5.1 Market Value: Population vs. Sample
M a r k e t  V a l u e :  P o p u l a t i o n M a r k e t V a l u e :  s a m p l e
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Figure 3.5.2 Book/Market Value: Population vs. Sample
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Figure 3.6.1 Distribution of Beta Forecasts

Distribution of B eta  F o r e c a sts :  
(b a s e d  on  1 0 5  S ecu r ities)
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Figure 3.6.2 Distribution of Beta Estimates Based on 4 Methods.
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Figure 3.7.1 Scatter Diagram of Ex-Post Abnormal Returns vs. Alpha Forecasts

Scatter Diagram 
(based on Vasicek + AC Method with n=1)
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Figure 3.7.2 Fitted Lines Based on 3 Specifications

Fitted Lines with 3 Specifications 
(based on Vasicek + AC Method with n=1)
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Figure 3.7.3 Predictive Power (adjusted R2)

Predictive Power (Adjusted R2) over time 
(based on Vasicek + AC Method with n=1)

0 .0 4

0.035

® 0.03
_i
■o
5  0.025c
k
T  0.02

o.o
COw 0.015
coQ.

0.01I
CD
c
^  0.005

20 2 5 3 0 3 5 40151050

D a te  F o r e c a s t s  M ad e (The First A djusted  R 2 = 0 .0 8 )  

Figure 3.8.1 Forecasting Monthly S&P500 Index

Forecasting Monthly S&P500 Index (2 /93-1 /96 )
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Figure 3.8.2 Trynor-Black Portfolio Weight

O L S(solid ) N C LA D (dash) JSLA D (dotted) O SL A D (plus) L A D (dash dot) 
(U nrestricted C o v a r ia n ce  M od el,V asicek ,K ind ed  Line)

35

3 0

.CO
2 5

10

3 520 2 5 3 0 4 05 10 150

Prediction  Period: 2 /9 3  - 1 / 9 6  

Figure 3.8.3 Forecasting Residual Return

F o reca stin g  R esid u a l Return (2 /9 3 -1 2 /9 5 )  
(U nrestricted  C o v a r ia n ce  M od el,V asicek ,K ind ed  Line,JSLA D )
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Figure 3.8.4 Forecasting the Beta of the Active Portfolio

F orecastin g  th e  B eta  o f  th e  A ctive Portfolio (2 /9 3 -1 /9 6 )  
(Unrestricted C o v a r ia n ce  M od el.V asicek .K ind ed  Line,JSLAD)
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Figure 3.8.5 Estimate of Slope Coefficient
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Figure 3.8.6 Treynor-Black Portfolio Weight (Stabilized)

O L S(solid ) N CLAD(dash) JSLA D (dotted) O S L A D (p lu s) L A D (dashdot) 
(Unrestricted C ovarian ce  M od el.V asicek .K ind ed  Line)
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Figure 3.8.7 Wealth Index
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